Ịzụ okooko osisi

Ifuru osisi bụ ọmụmụ maka mmepụta nke ọma nke osisi ndị na-emepụta okooko osisi mara mma na akwụkwọ ndụ akwụkwọ ndụ maka ụtọ mmadụ na gburugburu mmadụ. Ọ bụ ngalaba ọrụ ubi na ọrụ ugbo na-aga nke ọma n'ahịa n'ụwa niile. Emepụtala usoro mmepụta nke ọma kemgbe ọtụtụ afọ, n'ihi na ọtụtụ narị taxa osisi a na-eji na ụlọ ọrụ ifuru, na-abawanye ihe ọmụma zuru oke nke usoro ihe ọkụkụ niile. Ịzụ ihe ọkụkụ na nhọrọ ewepụtala iri puku kwuru iri puku genotypes ọhụrụ maka ojiji mmadụ. Jasmine, marigold, chrysanthemum, rose, orchid, na anthurium bụ okooko osisi nke azụmahịa chọrọ.

Ụlọ ahịa na-ere ahịa na-egosi ụfọdụ n'ime ụdị osisi dị iche iche
A na-ere mkpụrụ osisi n'ahịa dị na Breda, Netherlands

Nchịkọta

dezie

Okooko osisi bụ akụkụ nke ọha mmadụ. A na-eji ha eme ihe n'oge ọṅụ na mwute na akụkụ nke ndụ kwa ụbọchị. Okooko osisi na osisi nwere ike ịdị n'ime ụlọ na windo anwụ na-acha, dịka akụkụ nke odida obodo dị n'ihu ụlọ ma ọ bụ na patio ma ọ bụ oche dị n'azụ ụlọ. Ndị mmadụ na-amụ ifuru na osisi na mmekọrịta ha na mmadụ na otu esi emepụta ifuru na osisi ndị a ka mmadụ niile nwee ike ịnụ ụtọ ha. Ndị ọkà mmụta sayensị floriculture n'ụwa niile na-arụ ọrụ a.

ihe ọkụkụ na-emepụta okooko osisi na-agụnye okooko osisi ndị a na-egbutu egbutu [1] na ahịhịa ndị a na'egbutu, ahịhịhịa na-egbuke egbuke (ahịhịa ubi ma ọ bụ ahịhịrị, na ahịha na-egwupụta, ahịha ụlọ (ahịha na ahịhi na ahịhwa na ahịhe na ahịsị osisi). [2] [3] A na-emepụta osisi ndị a n'ala ala, ubi okooko osisi ma ọ bụ n'ime akpa n'ụlọ okpomọkụ. A na-ejikarị ihe ọkụkụ a na-echebe eme ihe n'ihi na osisi ndị a nwere uru dị elu nye ụmụ mmadụ.

A na-akụ ihe ọkụkụ okooko osisi n'ụzọ dị mfe ma ọ bụ nke dị mgbagwoju anya. Enwere ike ịkụ ihe ọkụkụ ndị a n'ala n'ubi ugbo ma ọ bụ n'ala ubi n'ụlọ okpomọkụ dị ọnụ ala. Ruo ọtụtụ afọ, a na-akụ okooko osisi, n'oge maka ihe ọkụkụ a kapịrị ọnụ, nso ahịa na Europe, North America na Eshia. Otú ọ dị, ọtụtụ ihe ọkụkụ nke ụlọ ọrụ okooko osisi akwagala na ihu igwe a kapịrị ọnụ, nke a na-ahụkarị n'ugwu ndị dị na South America, Africa na China, yabụ enwere ike ịzụlite osisi ụfọdụ n'afọ gburugburu ebe ọrụ aka dị.[4][5]

Ọrụ ugbo a na-echebe (greenhouses) emeela n'otu oge na mgbanwe ndị na-aga n'ihu na okooko osisi na ahịa. Floriculture bụ akụkụ dị mkpa nke ọrụ ugbo na-achịkwa gburugburu ebe obibi (CEA). Ihe ọkụkụ na-emepụta okooko osisi nwere uru dị elu nye ụmụ mmadụ, yabụ ọnụahịa nke usoro mmepụta dị oke ọnụ - greenhouses, [6] [7] [8] nchịkwa gburugburu ebe obibi na-akpaghị aka, ịgba mmiri na Imeju, mkpụrụ robot, transplant na njikwa akpa, ọkụ photosynthetic - dị mkpa iji mepụta osisi ndị a nke ọma maka ahịa ụwa niile. A na-eji aka na-agba ụfọdụ mmiri, mana a na-agba ọtụtụ n'ime ha mmiri site na ịgba mmiri, ịgba mmiri ma ọ bụ ala idei mmiri. Enwere ike iji hydroponics mee ihe maka ọtụtụ okooko osisi a na-egbutu egbutu. [6] [8]

Ọnụ ahịa okooko osisi 2022

dezie

A na-eme atụmatụ na ọnụ ọgụgụ ahịa Floriculture zuru ụwa ọnụ ga-aba US $ 50040 nde na 2022 ma na-atụ anya na ọ ga-abụ ọnụ ọgụgụ US $ 58030 nde site na 2028 na ọnụ ọgụgụ uto kwa afọ nke 2.5% n'oge nyocha ahụ.[9]

Ngụkọta ọnụ ahịa ọnụ ahịa ahịa n'ofe ihe ọkụkụ US niile ruru ijeri US $ 6.69 na 2022 sitere na ndị na-emepụta floriculture 8,951 nwere mpaghara mmepụta nke nde 833 square ụkwụ..[10]

Ubi okooko osisi

dezie

Mkpụrụ osisi na-edina n'afọ

dezie

Osisi Ndị Na-agbasa Okooko osisi

dezie

Osisi Ndị Na-adịgide Adịgide

dezie

Osisi ndị na-eto eto, n'ime ụlọ/iji ha eme ihe n'èzí

dezie

Ihe Ndị Na-agbasa Ubi Ubi Ugo

dezie

Osisi Ndị A Na-egbutu

dezie

Mkpụrụ osisi ndị a kụrụ akụ

dezie

Ọganihu nke ịkọ okooko osisi

dezie

Ndị na-anụ ọkụ n'obi na ndị na-akụ ihe ọkụkụ mụtara nkọwa dị mkpa gbasara itolite ụfọdụ osisi n'ime afọ. A na-akọ Chrysanthemums na China ihe karịrị afọ 3000, [1] yabụ ndị na-akụ osisi maara banyere osisi ahụ na otu esi eto ya. Ndị ọkà mmụta sayensị floriculture gara n'ihu n'usoro a iji chịkwaa gburugburu osisi ahụ iji chịkwaa ifuru maka ụbọchị ndị dị ịrịba ama mgbe ụmụ mmadụ chọrọ ifuru maka ememe na nnọkọ.

Oge foto

dezie

Chrysanthemum bụ otu n'ime osisi ndị e ji mee nnwale nke dugara na nkọwa nke photoperiod na photoperiodiism.[11] N'agbanyeghị nke ahụ, o yikarịrị ka ndị China, ndị Korea na ndị Japan nwere ezi nghọta dabere na afọ ha nwere ahụmahụ. Ọbịbịa nke nzaghachi ahụike a na ihe kpatara ya abụwo isiokwu nke ọtụtụ nnwale na mahadum na ụlọ ọrụ [12] [13][14][15] Poinsettias bụ osisi ọzọ dị mkpirikpi nke dị mkpa maka ndị na-akụ okooko osisi.[16] Nnyocha ndị a na ahụmịhe ndị ọzọ egosiwo na okpomọkụ nwere mmetụta na nzaghachi photoperiodic.[17] Ọtụtụ ụdị okooko osisi na ihe ndina na-emeghachi omume na ọgwụgwọ ụbọchị ogologo ma ọ bụ ụbọchị dị mkpirikpi maka okooko osisi ngwa ngwa. [18][19][20] Ojiji nke ọgwụgwọ ọkụ iji gbatịkwuo ụbọchị na ọgwụgwọ ákwà ojii iji mee ka ụbọchị dị mkpirikpi bụ ihe mgbakwunye dị mkpa na okooko osisi iji bulie arụmọrụ nke mmepụta osisi.

Uto nke anụ ahụ, micropagation

dezie

Mgbasa nke osisi abụwo akụkụ nke okooko osisi na ubi osisi. Ọdịbendị anụ ahụ malitere dị ka ụzọ isi chekwaa orchid embryo dị ka ndị na-achọ orchid na-azụlite ụdị ọhụrụ. Ọtụtụ horticulture na ọtụtụ mmemme botany n'ụwa nwere ndị ọkà mmụta sayensị na-arụ ọrụ na mgbasa nke osisi site na usoro ọdịbendị anụ ahụ site na 1950s ruo 1980s. [21] [22][23] Ihe omume ndị a gbasaa ihe ọmụma dị iche iche ma nye ụlọ ọrụ ohere ịchọta njikọ na mmepụta azụmahịa. Ọdịbendị anụ ahụ nke osisi nyere ohere ka a gbasaa phenotypes ọhụrụ, pụrụ iche na genotypes n'ọnụ ọgụgụ buru ibu ngwa ngwa. Ọtụtụ ụdị osisi ndị na-acha akwụkwọ ndụ akwụkwọ ndụ dị naanị site na omenala anụ ahụ.[24] N'ụzọ pụrụ iche, a na-agwọ geraniums na-eto eto iji nye ohere ịmata na iwepụ ọtụtụ nje virus, nje-ndexed.[25] Ka ewepụrụ nje virus, ọtụtụ njirimara ubi nke ọtụtụ ụdị na-apụ n'anya; nke a mere ka ndị na-azụ osisi hapụ ọtụtụ nje virus n'usoro ọmụmụ maka ụdị n'ọdịnihu. A na-eji ọgwụgwọ okpomọkụ nke ọdịbendị anụ ahụ nke ọtụtụ taxa ewepụ nje bacteria na nje virus na ihe ọkụkụ dị iche iche.

Ihe nkwakọba ihe na mgbasa ozi na-eto eto

dezie

A na-eji ihe dị iche iche dị iche iche mee ihe na omenala osisi ruo ogologo oge. A na-etinye ala ubi ma ọ bụ ala ubi ikekwe yana mgbakwunye organic okwu (compost) na-etinye n'ime akpa ma ọ bụ ite ma tinyekwa ihe ọkụkụ na-esochi ya mgbe niile. Ọ dị mfe mana ọ chọrọ ahụmịhe na anya nche iji gbochie oke mmiri.

Ọtụtụ ndị mmadụ amataghị na ihe ịga nke ọma a na-ejikọta ya na ite miri emi, nke na-adịkarị 6-10 sentimita (15–25 cm) nke dị omimi ma ọ bụ karịa. Ike ndọda zuru ezu ịdọrọ ma ọ bụ igbapu mmiri n'ala nke mere na akụkụ zuru oke nke ala dị n'ite ahụ na-agbapụta nke ọma na ikuku oxygen ga-adị na mgbọrọgwụ mgbọrọgwụ. Ka ụlọ griin ha siri malite ịgbasa azụmahịa ụlọ ihe ndina na 1950s na 1960, ha chọrọ obere akpa maka akụkụ logistical spacing na mbupu. Vacuum guzobere trays na ngwugwu rọba na-enye nha ndị pere mpe mana ala ubi gbajiri agbaja dị mfe ịfefe mmiri n'ime obere akpa. Nzọụkwụ mbụ bụ itinye peat moss na perlite na ala ubi na nha 1:1:1. Nzọụkwụ ọzọ bụ iji ihe ndị ọzọ, sphagnum moss peat na vermiculite, na nha 1: 1, Cornell peat-lite mix.[1][2] Na 1970s, a na-eji ihe ndị ọzọ eme ihe maka mgbasa ozi na-eto eto site na ụlọ ọrụ ndị e guzobere iji hazie na kesaa mgbasa ozi na-eto eto na ọrụ n'ofe mba ahụ. A ga-enyocha akụrụngwa anụ ahụ nke ngwaahịa niile n'ụdị ọkọlọtọ iji mee nhọrọ amamihe dị na ya na mkpebi akụ na ụba ndị ọrụ na-eme.[3][4] Dị ka mmepụta plọg (ihe ọkụkụ na-eto eto), nhazi nke mkpụrụ germination na mechanization nke transplanting, malitere na 1980s ọzọ ọrụ dị mkpa iji jikwaa obere olu mgbasa ozi na-eto eto na plọg trays.[5] Nnyocha na-aga n'ihu nke akụkụ niile nke mgbasa ozi na-eto eto na imepụta akpa.

Owuwe ihe ubi na ojiji nke peat maka mgbasa ozi na-eto eto ka bụ nsogbu gburugburu ebe obibi na North America na Europe.[26] A na-aga n'ihu na-agbakwunye ihe ndị ọzọ na ndị na-adịgide adịgide na nhazi mgbasa ozi na-eto eto - osisi pine, osisi pine a na-edozi, coco coir, eriri osisi, wdg.[27][28] Ihe ngwọta na-adịgide adịgide maka ihe mgbasa ozi na-eto eto ka bụ ihe kachasị mkpa maka ụlọ ọrụ ahụ.[29]

Ihe fọdụrụnụ na-egbu egbu

dezie

Ihe fọdụrụ na-egbu egbu ka bụ ihe dị mkpa maka ihe ọkụkụ okooko osisi. Ọtụtụ mba nwere obere njikwa na ojiji nke ọgwụ ahụhụ mana ndị na-ahụ maka okooko osisi na ndị na-azụ ahịa nwere ike imerụ ihe fọdụrụ.[30][31]

Mmetụta nke ụfọdụ ọgwụ ahụhụ, neonics, na aṅụ na ihe ndị ọzọ na-eme ntụ ọka aghọwo nchegbu dị ukwuu. Mmetụta nke ọgwụ ahụhụ ndị a na okooko osisi n'ogige n'oge mmepụta ụlọ nwere ike inwe mmetụta dị ukwuu na ndị na-eme ntụ ọka n'ogbe ndị na-azụ ahịa.[32][33]

Nnyocha na-aga n'ihu na njikwa nke ụmụ ahụhụ na-ekpo ọkụ, ụmụ ahụhụ na pathogens osisi iji belata ojiji ọgwụ ahụhụ na mmepụta ihe ọkụkụ. [34] [35][36]

Ìhè ndị ọzọ

dezie

Ìhè mgbakwunye maka ihe ọkụkụ okooko osisi malitere site na ọgwụgwọ photoperiod na mmasị gbasaa iji chọpụta ma ìhè aka sitere na oriọna eletrik nwere ike dochie anya ìhè anyanwụ n'oge oyi.[37][38] Igwe ọkụ ọkụ enweghị ihe ịga nke ọma, ya mere, ịkọ okooko osisi ga-echere ka teknụzụ ọkụ ka ọ dịkwuo mma. Ọganihu na oriọna fluorescent na oriọna ụlọ ọrụ (mmiri mercury, sodium dị elu, sodium na-adịchaghị elu, wdg) dugara n'imeziwanye mmepụta osisi maka geraniums, roses na ihe ọkụkụ ndị ọzọ.[39][40][41][42] N'ime iri afọ ndị sochirinụ, ọkụ na-egbuke egbuke ghọrọ ihe a na-eme na Europe, North America na Japan.[43]

A rụchara ọrụ iji mee ka mkpa ụlọ ọrụ maka ìhè (ike na-egbuke egbuke) site na ihe okike na nke aka. E webatara okwu ahụ bụ daily light integral (DLI) dị ka ihe atụ nke oke ike radiant nke osisi ọ bụla chọrọ maka uto kachasị mma. [44] [45] [46][47]

Mmalite nke ọkụ na-enye ìhè diode (LED) nyere ohere ndị ọzọ maka ọkụ mgbakwunye. Lamps ndị a dị irè karị na mmepụta ìhè, dị jụụ ma nye ohere ịchịkwa àgwà ìhè site na ogologo dị iche iche nke ìhè ma e jiri ya tụnyere oriọna ndị ọzọ. [48] [49][50]

A na-eji ọkụ na-agbakwunye eme ihe iji melite mmepụta nke mkpụrụ osisi, [51] [52] osisi ndina, [19] okooko osisi na-egbutu [53] na ihe ọkụkụ ndị ọzọ.

Nri na-edozi ahụ, ogo mmiri na ịgba mmiri

dezie

A na-akụ ihe ọkụkụ n'ubi n'ubi dịka ihe ọkụkụ niile nke horticultural na nke ugbo. A na-ejide ihe oriri ndị dị mkpa maka okooko osisi na matriks ala ma gbakwunye ya na ihe mgbakwunye nke ihe ndị dị ndụ na nri anụmanụ. Ihe mgbakwunye organic ndị a na-arụsi ọrụ ike na enweghị nkwekọrịta, na-ebelata ikike ịkwalite mmepụta ifuru. Floriculture kwagara na mgbasa ozi na-eto eto na ngwaahịa fatịlaịza inorganic na 1950s na 1960 ka mmepụta akpa ghọrọ ihe dị mkpa karị. Nchọpụta hydroponic kwadoro mmegharị a karịa nyocha sayensị ala. Ọdịdị "ala-enweghị" nke hydroponics yiri nke "ala-enweghị" nke mgbasa ozi na-eto eto.

Hụkwa

dezie
  • Ịzụ okooko osisi na Canada
  • Ịzụ okooko osisi na Taiwan

Ebem si dee

dezie
  1. Armitage (1993). Specialty cut flowers. The production of annuals, perennials, bulbs and woody plants for fresh and dried cut flowers.. cabdirect.org. 
  2. Dole (2004). Floriculture: Principles and Species, 2nd, Pearson.. 
  3. Larson (2013). Introduction to Floriculture. United States: Elsevier Science. 
  4. Van Rijswick C. World floriculture map 2015. Gearing Up for Stronger Competition, Rabobank Industry Note. 2015 Jan(475).
  5. Harisha (Oct 2017). "An economic analysis of floriculture in India.". In Proceedings of the Sixth Middle East Conference on Global Business, Economics, Finance and Banking (ME17Dubai Conference): 6–8. 
  6. 6.0 6.1 Hanan (2017). Greenhouses: Advanced Technology for Protected Horticulture.. 
  7. Hanan (1978). Greenhouse Management, Advanced Series in Agricultural Sciences. Springer-Verlag. 
  8. 8.0 8.1 Chris Beytes (Editor). 2021. Ball RedBook: Greenhouse Structures, Equipment, and Technology 19th Edition. Ball Publishing.
  9. Floriculture Market 2022. Size, Share, Growth. Trends, Recent Developments, Company Profiles, Key Suppliers, Production Capacity, Revenue & Gross Margin, Market Drivers, Opportunities, Challenges and Forecast 2028. Market Reports World. April 04, 2022 07:48 ET.
  10. 2022 Commercial Floriculture Survey NASS's Quick Stats. National Agricultural Statistics Service. United States Department of Agriculture. 05/31/2023.
  11. Garner, W. and H. Allard. 1920. Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Jour. Agr. Res. 18:553-606.
  12. Withrow, R.B. and H.M. Benedict. 1936. Photoperiodic responses of certain greenhouse annuals as influenced by intensity and wavelength of artificial light used to lengthen the daylight period. Plant Physiol. 11:225-249.
  13. Popham, R. A., & Chan, A. P. (1952). Origin and development of the receptacle of Chrysanthemum morifolium. American Journal of Botany, 329-339.
  14. Higuchi, Y., Sumitomo, K., Oda, A., Shimizu, H., & Hisamatsu, T. (2012). Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering. Journal of plant physiology, 169(18), 1789-1796.
  15. Lee, B. J., Won, M. K., Choi, W. C., Yang, E. S., Lee, J. S., & Atherton, J. G. (2004). Floral development of chrysanthemum influenced by photoperiod. HORTICULTURE ENVIRONMENT and BIOTECHNOLOGY, 45(3), 149-153.
  16. Parker, M. W., Borthwick, H. A., & Rappleye, L. E. (1950). Photoperiodic responses of poinsettia. Florists' Exchange, 115(20), 11-50.
  17. Alden, M., & Faust, J. E. (2021). Unravelling the role of temperature and photoperiod on poinsettia heat delay. HortScience, 56(9), 1097-1103.
  18. Harshitha, H. M., Chandrashekar, S. Y., & Harishkumar, K. (2021). Photoperiod manipulation in flowers and ornamentals for perpetual flowering. Pharma Innov J, 10(6), 127-134.
  19. 19.0 19.1 Erwin, J. E., & Warner, R. M. (2000, November). Determination of photoperiodic response group and effect of supplemental irradiance on flowering of several bedding plant species. In IV International ISHS Symposium on Artificial Lighting 580 (pp. 95-99).
  20. Adams, S. R., & Langton, F. A. (2005). Photoperiod and plant growth: a review. The Journal of Horticultural Science and Biotechnology, 80(1), 2-10.
  21. Thorpe, T. A. (2007). History of plant tissue culture. Molecular biotechnology, 37, 169-180.
  22. Gamborg, O. L., Murashige, T., Thorpe, T. A., & Vasil, I. K. (1976). Plant tissue culture media. In vitro, 12(7), 473-478.
  23. García-Gonzáles, R., Quiroz, K., Carrasco, B., & Caligari, P. (2010). Plant tissue culture: Current status, opportunities and challenges. International Journal of Agriculture and Natural Resources, 37(3), 5-30.
  24. Griffith, L. P. (1998). Tropical Foliage Plants: A Grower's Guide. United States: Ball Pub.
  25. Oglevee-O'Donovan, W. (1986). Production of culture virus-indexed geraniums. In Tissue culture as a plant production system for horticultural crops: Conference on Tissue Culture as a Plant Production System for Horticultural Crops, Beltsville, MD, October 20–23, 1985 (pp. 119-123). Dordrecht: Springer Netherlands.
  26. Kitir, N., Yildirim, E., Şahin, Ü., Turan, M., Ekinci, M., Ors, S., ... & Ünlü, H. (2018). Peat use in horticulture. Peat; Topcuoglu, B., Turan, M., Eds.; IntechOpen: London, UK, 75-90.
  27. Jackson B., Fields J., Altland J., Owen J. (2022). The Latest on Growing Media Research Jan 1, 2022.
  28. Eveleens, B., van Winkel, A., & Blok, C. (2021, August). Wood fiber in pot plant culture; peat replacement up to 50% in volume?. In II International Symposium on Growing Media, Soilless Cultivation, and Compost Utilization in Horticulture 1317 (pp. 165-174).
  29. Barrett, G. E., Alexander, P. D., Robinson, J. S., & Bragg, N. C. (2016). Achieving environmentally sustainable growing media for soilless plant cultivation systems–A review. Scientia horticulturae, 212, 220-234.
  30. Toumi, K., Vleminckx, C., Van Loco, J., Schiffers, B. 2016. Pesticide Residues on Three Cut Flower Species and Potential Exposure of Florists in Belgium.International Journal of Environmental Research and Public Health 13:943.
  31. Pereira, P., Parente, C., Carvalho, G., Torres, J., Meire, R., Dorneles, P., Malm, O. (2021) A review on pesticides in flower production: A push to reduce human exposure and environmental contamination. Environmental Pollution, Volume 289:117817
  32. Potts, S. G., Imperatriz-Fonseca, V., Ngo, H. T., Aizen, M. A., Biesmeijer, J. C., Breeze, T. D., ... & Vanbergen, A. J. (2016). Safeguarding pollinators and their values to human well-being. Nature, 540(7632), 220-229.
  33. Thompson, D. A., Lehmler, H. J., Kolpin, D. W., Hladik, M. L., Vargo, J. D., Schilling, K. E., ... & Field, R. W. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environmental Science: Processes & Impacts, 22(6), 1315-1346.
  34. Messelink, G. J., & Janssen, A. (2014). Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation. Biological Control, 79, 1-7.
  35. van Lenteren, J. C. (2007). Biological control for insect pests in greenhouses: an unexpected success. Biological control: a global perspective. CAB Int, Wallingford, 105-117.
  36. Van Driesche, R., & Hoddle, M. (2009). Control of pests and weeds by natural enemies: an introduction to biological control. John Wiley & Sons.
  37. Werner, H. O. (1942). Relation of length of photoperiod and intensity of supplemental light to the production of flowers and berries in the greenhouse by several varieties of potatoes. Journal of Agricultural Research, 64, 257-275.
  38. Ramaley, F. (1934). Influence of supplemental light on blooming. Botanical Gazette, 96(1), 165-174.
  39. Carpenter, W. J., & Rodriguez, R. C. (1971). Earlier Flowering of Geranium cv. Carefree Scarlet by High Intensity Supplemental Light Treatment1. HortScience, 6(3), 206-207.
  40. Armitage, A. M., & Tsujita, M. J. (1979). Supplemental lighting and nitrogen nutrition effects on yield and quality of Forever Yours roses. Canadian Journal of Plant Science, 59(2), 343-350.
  41. Cathey, H. M., & Campbell, L. E. (1979). Relative Efficiency of High-and Low-pressure Sodium and Incandescent Filament Lamps Used to Supplement Natural Winter Light in Greenhouses1. Journal of the American Society for Horticultural Science, 104(6), 812-825.
  42. Lee, M.J., Seo, H.S., Min, S.Y., Lee, J., Park, S., Jeon, J.B., Kim, J. and Oh, W., 2021. Effects of supplemental lighting with high-pressure sodium or plasma lamps on quality and yield of cut roses. Horticultural Science and Technology, 39(1), pp.49-61.
  43. Moe, R., Grimstad, S. O., & Gislerod, H. R. (2005, June). The use of artificial light in year round production of greenhouse crops in Norway. In V International Symposium on Artificial Lighting in Horticulture 711 (pp. 35-42).
  44. Faust, J. E., Holcombe, V., Rajapakse, N. C., & Layne, D. R. (2005). The effect of daily light integral on bedding plant growth and flowering. HortScience, 40(3), 645-649.
  45. Kjaer, K. H., Ottosen, C. O., & Jørgensen, B. N. (2012). Timing growth and development of Campanula by daily light integral and supplemental light level in a cost-efficient light control system. Scientia Horticulturae, 143, 189-196.
  46. Faust, J. E., & Logan, J. (2018). Daily light integral: A research review and high-resolution maps of the United States. HortScience, 53(9), 1250-1257.
  47. Oh, W., Cheon, I. H., Kim, K. S., & Runkle, E. S. (2009). Photosynthetic daily light integral influences flowering time and crop characteristics of Cyclamen persicum. HortScience, 44(2), 341-344.
  48. Mitchell, C. A., Both, A. J., Bourget, C. M., Burr, J. F., Kubota, C., Lopez, R. G., ... & Runkle, E. S. (2012). LEDs: The future of greenhouse lighting!. Chronica Horticulturae, 52(1), 6-12.
  49. Jeong, S.W., Hogewoning, S.W. and van Ieperen, W., 2014. Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae, 165, pp.69-74.
  50. Kobori, M. M. R. G., da Costa Mello, S., de Freitas, I. S., Silveira, F. F., Alves, M. C., & Azevedo, R. A. (2022). Supplemental light with different blue and red ratios in the physiology, yield and quality of Impatiens. Scientia Horticulturae, 306, 111424.
  51. Oh, W., Runkle, E. S., & Warner, R. M. (2010). Timing and duration of supplemental lighting during the seedling stage influence quality and flowering in petunia and pansy. HortScience, 45(9), 1332-1337.
  52. Randall, W. C., & Lopez, R. G. (2015). Comparison of bedding plant seedlings grown under sole-source light-emitting diodes (LEDs) and greenhouse supplemental lighting from LEDs and high-pressure sodium lamps. HortScience, 50(5), 705-713.
  53. Spall, C. E., & Lopez, R. G. (2023). Supplemental Lighting Quality Influences Time to Flower and Finished Quality of Three Long-Day Specialty Cut Flowers. Horticulturae, 9(1), 73.