Rhizosphere bụ mpaghara dị warara nke ala ma ọ bụ mkpụrụ nke na-emetụta kpọmkwem site na nzuzo nzuzo mgbọrọgwụ na microorganisms ala jikọtara ya nke a maara dị ka mgbọrọgwụ microbiome. Oghere ala dị na rhizosphere nwere ike ịnwe ọtụtụ nje bacteria na microorganisms ndị ọzọ na-eri nri na mkpụrụ ndụ ihe ọkụkụ na-agbaze, nke a na-akpọ rhizodeposition, [3] na protein na sugars nke mgbọrọgwụ wepụtara, nke a na-akpọ mgbọrọgwụ exudates.[4]. Symbiosis a na-eduga na mmekọrịta dị mgbagwoju anya, na-emetụta uto osisi na asọmpi maka akụrụngwa. Ọtụtụ n'ime ịgba ígwè na-edozi ahụ na nkwụsị ọrịa site na ọgwụ nje nke osisi chọrọ na-apụta ozugbo n'akụkụ mgbọrọgwụ n'ihi mgbọrọgwụ exudates na ngwaahịa metabolic nke symbiotic na pathogenic obodo nke microorganisms.[5]. Rhizosphere na-enyekwa ohere iji mepụta allelochemicals iji chịkwaa ndị agbata obi na ndị ikwu. [1]

Some rhizosphere processes in the soil
(A) Ihe owuwu usoro mgbọrọgwụ na-echegbu onwe ya banyere ihe owuwu nke mgbọrọgwụ ma na-emeghachi omume na mkpali gburugburu ebe obibi. (B) Rhizosphere na-emepụta carbon a na-ejikọta ya na photosynthetically nke na-abanye n'ime ala ma na-emetụta gradients physicochemical nke ala. (C) Njem ndị na-ebi ndụ n'efu ma ọ bụ parasitic na-emekọrịta ihe na rhizosphere site na mmekọrịta mgbaàmà. (D) Mycorrhizal fungi na-emepụta mmekọrịta chiri anya na mgbọrọgwụ ma na-etinye aka na mgbanwe nri. (E) Ihe mejupụtara nje bacteria dị iche na akụkụ dị iche iche, afọ, ụdị mgbọrọgwụ.

Rhizoplane na-ezo aka n'elu mgbọrọgwụ gụnyere akụkụ ala ya jikọtara ya na-emekọrịta ihe na ibe ya.[7] Nzaghachi azụ ihe ọkụkụ-ala na ihe anụ ahụ ndị ọzọ na-eme na mbara ala ahịhịa-mkpọrọgwụ bụ nrụgide nhọrọ dị mkpa na obodo yana uto na rhizosphere na rhizoplane. [2]

Ihe ndị mere n'oge gara aga

dezie

Rhizoplane na-ezo aka n'elu mgbọrọgwụ gụnyere akụkụ ala ya jikọtara ya na-emekọrịta ihe na ibe ya.[7] Nzaghachi azụ ihe ọkụkụ-ala na ihe anụ ahụ ndị ọzọ na-eme na mbara ala ahịhịa-mkpọrọgwụ bụ nrụgide nhọrọ dị mkpa na obodo yana uto na rhizosphere na rhizoplane. [3][2]

Mmekọrịta kemịkal

dezie

 

Ọnụnọ kemịkal

dezie

Mgbọrọgwụ osisi nwere ike ịpụta 20-40% nke sugars na organic acids — carbon photosynthetically edoziri.[11] Mgbọrọgwụ ihe ọkụkụ, dị ka acids organic, na-agbanwe usoro kemịkalụ na obodo ndị dị ndụ nke rhizosphere ma e jiri ya tụnyere nnukwu ala ma ọ bụ ala nne na nna. Ntinye nke organic acids na saccharides na-emetụta ikike nke obodo ndị dị ndụ ịkwanye phosphorus, nitrogen, [12] [13] potassium, na mmiri na okpu mgbọrọgwụ, [4] na ngụkọta nke ígwè na osisi na ndị agbata obi ya. [14] Ikike nke mgbọrọgwụ osisi na microorganisms nke ala jikọtara ya inye protein ndị na-ebuga kpọmkwem na-emetụta ọnweta ígwè na mineral ndị ọzọ maka ya na ndị agbata obi ya. Nke a nwere ike imetụta nhazi nke obodo na ịdị mma ya.

Mgbọrọgwụ na-abịa n'ụdị kemịkal ndị mkpụrụ ndụ dị na mgbọrọgwụ na ihe mkpofu mkpụrụ ndụ a na-akpọ "rhizodeposition. " Mgbọrọ ndụ a na'ụdị dị iche iche nke carbon na nitrogen nke na-enye obodo ndị gbara mgbọrọgwụ osisi gburugburu ma na-emetụta kemịkal gbara mgbọrọ ndụ gburugburu.[4] Exopolysaccharides, dị ka polyglycolide (PGA), na-emetụta ikike mgbọrọgwụ nwere ịmị mmiri site n'ịnọgide na-enwe nkwụsi ike nke ala carbon sponge ma na-achịkwa mmiri na-aga.[5] Dịka ọmụmaatụ, nnyocha a na-eme n'ọhịa tomato gosiri na exopolysaccharides e wepụtara na rhizosphere dị iche (ngụkọta shuga na ọnụọgụ infrared) dabere na ụdị tomato a na-eto eto, nakwa na n'okpuru ọnọdụ mmiri (mmiri mmiri dị nta), mmụba nke mmepụta exopolytaccharide na ọrụ microbial metụtara ijigide mmiri n'ala na arụmọrụ nke tomato. [6][7] N'ime mkpụrụ osisi poteto, phenol na lignins mejupụtara ọnụ ọgụgụ kachasị ukwuu nke ion na-emetụta compounds n'agbanyeghị ebe ọ na-eto; Otú ọ dị, a chọpụtara na ike nke compounds dị iche iche na-emetụtara ala na ọnọdụ gburugburu ebe obibi, na-akpata ọdịiche dị n'etiti nitrogen compounds, lignins, phenols, carbohydrates, na amines.[8]

Allelchemicals

dezie

Ọ bụ ezie na ọ gafere mpaghara rhizosphere, ọ dị ịrịba ama na ụfọdụ osisi na-ezobe allelochemicals site na mgbọrọgwụ ha nke na-egbochi uto nke ihe ndị ọzọ. Dị ka ihe atụ, mọstad galik na-emepụta kemịkalụ e chere na ọ ga-egbochi mmekọrịta ụka n’etiti osisi ndị gbara ya gburugburu na mycorrhiza n’ime ọhịa ndị dị n’ebe ugwu America bụ́ ndị na-akpa ike.[9]

Ecology nke rhizosphere

dezie
 
A na-amịkọrọ ìhè anyanwụ na carbon dioxide sitere na ikuku site na akwụkwọ dị n'ime osisi ma gbanwee ya ka ọ bụrụ carbon kwụ ọtọ. Carbon a na-agbadata na mgbọrọgwụ nke osisi ahụ, ebe ụfọdụ na-agaghachi na akwụkwọ. A na-ebugharị carbon na-aga na mgbọrọgwụ n'èzí n'ime ala gbara ya gburugburu ebe ụmụ ahụhụ na-eji ya dị ka nri maka uto. Na nzaghachi, ụmụ irighiri ihe na-arapara na mgbọrọgwụ osisi ebe ọ na-eme ka mgbọrọgwụ nweta ihe oriri na nkwụsi ike ya na nrụgide gburugburu ebe obibi na pathogens. Na mmekọrịta symbiotic nke osisi / mgbọrọgwụ, mgbọrọgwụ osisi ahụ na-ewepụta flavonoids n'ime ala nke microbes na-anụ, ebe microbes ndị a na-ewepụ ihe ndị na-emetụta mgbọrọgwụ nke osisi nke na-akwalite ọrịa nke mgbọrọgwụ ihe ọkụkụ. Nje ndị a pụrụ iche na-eme nitrogen fixation na mgbọrọgwụ nodules, nke na-enye ihe oriri na osisi ahụ.
 
Mmetụta e buru n'amụma nke carbon dioxide dị elu na ebe nchekwa carbon nke ala N'oge na-adịghị anya, carbon dioxide dị ukwuu na-akpali uto osisi, na-akpata mmụba nke rhizodeposition, na-eme ka ụmụ irighiri ihe na-eme carbon nke ala (SOC) ma na-agbakwunye CO2 na ikuku site na iku ume.[21] Mana mmetụta zuru oke na gas na-ekpo ọkụ ga-ebelata site na mmụba nke CO2 site na ikuku site na mmadu nke uto osisi. Otú ọ dị, n'ime ogologo oge, ebe nchekwa ala nke carbon na-emebi ngwa ngwa ga-agwụ site na mmụba nke ọrụ microbial, na-akpata mmụba catabolism nke ebe nchekwa SOC, si otú a na-abawanye ikuku CO2 karịa ihe osisi na-ewere. A na-ebu amụma na nke a bụ nsogbu pụrụ iche na mbuze permafrost nke nwere nnukwu nchekwa nke SOC nke na-aghọwanye ihe na-emetụta mmebi nke nje dị ka mbuze permifrost.[10][11]

Rhizodeposition na-enye ohere maka uto nke obodo nke microorganisms gbara ya gburugburu na n'ime mgbọrọgwụ osisi. Nke a na-eduga na mmekọrịta dị mgbagwoju anya n'etiti ụdị dị iche iche, gụnyere imekọrịta onwe onye, ​​​​ịnwụ anwụ / parasitism, na asọmpi.

Ịchụ nta

dezie

A na-ewere predation dị ka nke elu-ala n'ihi na mmekọrịta ndị a na-ebelata ọnụ ọgụgụ mmadụ, ma nso nso nke mmekọrịta nke ụdị dị iche iche na-emetụta kpọmkwem nnweta ihe onwunwe na-eme ka ndị mmadụ nweekwa mmetụta site na njikwa ala.[23]. Na-enweghị anụ ala, ụmụ nje ndị na-erigbu ndị na-asọ mpi osisi na ndị na-akụ mkpụrụ osisi, mmekọrịta dị n'ime rhizosphere ga-emegide osisi. Anụ anụ ala na-enye akụkụ dị n'elu nke rhizosphere ma na-enye ohere maka mmụba nke ala na nri sitere na rhizodeposition na nitrogen inorganic. E gosipụtakwara ihe mgbagwoju anya nke mmekọrịta ndị a site na nnwale nke anụ ọhịa nkịtị, dị ka nematodes na protists. Egosiri na nri sitere na nematodes na-enye nje bacteria na-emetụta nnweta nitrogen na uto osisi.[24] Enwekwara mmụba n'ọnụ ọgụgụ nke nje bacteria ndị etinyere nematodes na ya. Predation on Pseudomonas nke amoeba na-egosi na ndị na-eri anụ na-enwe ike imeziwanye nsị na-emepụta site na anụ oriri na-enweghị mmekọrịta kpọmkwem site na iji supernatant.[25] Ikike nke ndị na-eri anụ iji chịkwaa okwu na mmepụta nke ndị na-ahụ maka biocontrol na anụ anụ na-enweghị kọntaktị kpọmkwem metụtara mgbanwe nke ụdị anụ anụ na-egosi akara nke oke anụ anụ na ihe oriri.

A pụrụ iwere webụ nri dị na rhizosphere dị ka ọwa atọ dị iche iche nwere ụzọ abụọ dị iche iche nke ike: ọwa detritus na-adabere na ya bụ fungi na ụdị nje, na ọwa na-adabere na ike mgbọrọgwụ nwere nematodes, ụdị symbiotic, na ụfọdụ arthropods. 23] Weebụ nri a na-agbanwe mgbe niile ebe ọ bụ na ọnụọgụ detritus dị na ọnụego mgbọrọgwụ sloughing na-agbanwe ka mgbọrọgwụ na-eto ma na-eto. A na-ewere ọwa nje a dị ka ọwa ngwa ngwa n'ihi ikike nke ụdị na-elekwasị anya na ihe ndị ọzọ a na-enweta na rhizosphere ma nwee oge ịmaliteghachi ngwa ngwa ma e jiri ya tụnyere ọwa fungal. Ọwa atọ ndị a nwekwara njikọ na mgbọrọgwụ nke na-etolite ntọala nke gburugburu ebe obibi rhizosphere na ndị na-eri anụ, dị ka nematodes na protists, ndị na-eri anụ n'ọtụtụ ụdị microflora.

Ịsọ mpi

dezie

The mpi n'etiti osisi n'ihi tọhapụrụ exudates dabeere geometrical Njirimara, nke na-ekpebi ike nke interception nke exudates si ọ bụla n'ókè metụtara osisi 'mgbọrọgwụ, physicochemical Njirimara, nke na-ekpebi ike nke ọ bụla mgbọrọgwụ na-elu exudates na mpaghara. [26] Njirimara geometric bụ njupụta nke mgbọrọgwụ, dayameta mgbọrọgwụ, na nkesa nke mgbọrọgwụ. Ngwongwo physicochemical bụ ọnụọgụ exudation, ọnụ ọgụgụ ire ure nke exudates, na ihe ndị dị na gburugburu ebe obibi na-emetụta mgbasa. Ndị a Njirimara kọwaa rhizosphere nke mgbọrọgwụ na likelihood na osisi nwere ike ozugbo mpi na ndị agbata obi.

Osisi na microflora ala na-asọ mpi n'ụzọ na-apụtaghị ìhè megide ibe ha site na ijikọta ihe onwunwe na-egbochi, dị ka carbon na nitrogen, n'ime biomass ha.[12] Asọmpi a nwere ike ime na ọnụego dịgasị iche iche n'ihi oke carbon na nitrogen na detritus na mineralization na-aga n'ihu nke nitrogen n'ime ala. Mycorrhizae na heterotrophic soil microorganisms na-asọ mpi maka ma carbon na nitrogen, dabere na nke na-egbochi n'oge ahụ, nke n'onwe ya dabere na ụdị, ikike scavenging, na ọnọdụ gburugburu ebe obibi na-emetụta ntinye nitrogen. Osisi anaghị enwe ihe ịga nke ọma na ịmị nitrogen, dị ka amino acid, karịa microflora ala nke dị na rhizosphere.[13] Nke a na-agwa mmekọrịta mmekọrịta ndị ọzọ nke osisi mepụtara n'ihe gbasara nitrogen.

Ịsọ mpi n'elu ihe onwunwe ndị ọzọ, dị ka oxygen na gburugburu ebe obibi, na-emetụta kpọmkwem site na ebe obibi na oge nke ụdị na rhizosphere. Na methanotrophs, ịdị nso na mgbọrọgwụ dị elu na elu dị mkpa ma nyere aka chọpụta ebe ha na-achịkwa heterotrophs na ubi osikapa.[14]

Njikọ na-adịghị ike n'etiti ọwa dị iche iche nke ike dị mkpa na nhazi nke ọnụ ọgụgụ nke anụ na anụ oriri na nnweta nke ihe onwunwe na biome. Njikọ siri ike n'etiti ndị na-azụ ahịa na ndị na-ere ahịa na-emepụta usoro jikọtara ọnụ nke oscillators, nke a na-ekpebi site na ọdịdị nke ihe onwunwe ndị dịnụ.[15] Enwere ike iwere usoro ndị a dị ka cyclical, quasi-periodic, ma ọ bụ ọgba aghara.

Ịhụnanya n'Ịntanet

dezie

Osisi na-ewepụta ọtụtụ ngwakọta site na mgbọrọgwụ ha iji rụọ ọrụ symbiotic na rhizosphere. Strigolactons, nke mycorrhizal fungi na-ewepụta ma chọpụta, na-akpali ntolite nke spores ma malite mgbanwe na mycorrhiza nke na-enye ya ohere ịchịkwa mgbọrọgwụ. Osisi parasitic, Striga na-achọpụta ọnụnọ nke strigolactones ma ga-epulite mgbe ọ chọpụtara ha; ha ga-abanye na mgbọrọgwụ, na-eri nri ndị dị ugbu a.[16][17]

Nje bacteria na-ejikọta nitrogen, dị ka ụdị Rhizobium, na-achọpụta ihe ndị dị ka flavonoids nke mgbọrọgwụ nke osisi leguminus na-ewepụta wee mepụta ihe ndị na-eme ka osisi ahụ mara na ha nọ ma ga-eduga n'ịmepụta nodules mgbọrọgwụ. A na-etinye nje bacteria na symbiosomes n'ime nodules ndị a, ebe ihe na-edozi ahụ na-akwado ha ma gbanwee gas nitrogen ka ọ bụrụ ụdị nke osisi ahụ nwere ike iji.[18] Nje bacteria na-adịghị symbiotic (ma ọ bụ "ndị na-ebi ndụ n'efu") nitrogen nwere ike ibi na rhizosphere n'èzí mgbọrọgwụ nke osisi ụfọdụ (gụnyere ọtụtụ ahịhịa) na n'otu aka ahụ "fix" nitrogen gas na rhizospher nke osisi na-edozi ahụ. Ọ bụ ezie na a na-eche na ihe ndị a na-emetụta naanị osisi ndị ha bi, ha nwere ike imeghachi omume n'ụzọ siri ike na ọnọdụ nke osisi. Dịka ọmụmaatụ, nje bacteria na-ejikọta nitrogen na rhizosphere nke osisi Osikapa na-egosipụta okirikiri N'ehihie nke na-eṅomi omume osisi ma na-enyekarị nitrogen na-adịgide adịgide n'oge uto mgbe osisi ahụ gosipụtara nnukwu ọchịchọ maka nitrogen.[19]

N'ịgbanwe ihe onwunwe na ebe mgbaba nke osisi na mgbọrọgwụ na-enye, fungus na nje bacteria na-achịkwa nje pathogenic.[20] Fungi ndị na-eme ihe ndị dị otú ahụ na-ejikwa mmekọrịta chiri anya na ụdị osisi n'ụdị mycorrhizal fungi, nke dịgasị iche n'otú ha si emekọrịta ihe na osisi. Arbuscular mycorrhizal fungi na nje bacteria nke na-eme ka rhizosphere bụrụ ebe obibi ha na-emepụta mmekọrịta chiri anya iji bụrụ ndị na-asọmpi.[21] nke na-arụ ọrụ n'ime nnukwu okirikiri nke ihe oriri na-emetụta usoro okike, dị ka ụzọ biogeochemical.[22]

Ọdịdị obodo

dezie

A na-akpọ rhizosphere dị ka nnukwu ụzọ ozi n'ihi ịdị nso nke ebe data, nke gụnyere mgbọrọgwụ na ihe ndị dị ndụ n'ime ala, na ụzọ maka ịnyefe data site na iji exudates na obodo.[23] A na-eji nkọwa a akọwa mmekọrịta dị mgbagwoju anya nke osisi, ndị na-ahụ maka fungal ha, na ụdị nje bacteria ndị bi na rhizosphere batara n'ime usoro evolushọn ha. Ụdị ụfọdụ dị ka Trichoderma na-adọrọ mmasị n'ihi ikike ha nwere ịhọrọ maka ụdị dị iche iche na web a dị mgbagwoju anya. Trichoderma bụ ihe na-achịkwa ihe ndị dị ndụ n'ihi ihe akaebe na ọ nwere ike belata pathogens nke osisi na rhizosphere.[24] Osisi n'onwe ha na-emetụtakwa ụdị nje bacteria dị na rhizosphere a na-ahọrọ megide ya n'ihi iwebata exudates na mmekọrịta ha na-enwe. Nchịkwa nke ụdị dị iche iche dị na obere ebe ndị a nwere ike imetụta ikike nke oghere ndị a na ọnọdụ ọdịnihu maka ọdịdị gburugburu ebe obibi n'ọdịnihu.[20][1]

Òtù Ụmụ Anụmanụ

dezie
 
Rhizosphere microbial consortia [40]
Rhizosphere microbial consortiaTempleeti:Hsp[25]

Ọ bụ ezie na nnyocha dị iche iche egosila na otu microorganisms nwere ike inwe mmetụta bara uru na osisi, ọ na-apụtawanye ìhè na mgbe njikọ microbial - abụọ ma ọ bụ karịa microorganisms na-emekọrịta ihe - na-etinye aka, enwere ike ịtụ anya nsonaazụ mgbakwunye ma ọ bụ synergistic. Nke a na-eme, n'akụkụ ụfọdụ, n'ihi eziokwu ahụ bụ na ọtụtụ ụdị nwere ike ịrụ ọrụ dịgasị iche iche na gburugburu ebe obibi dị ka rhizosphere. Usoro bara uru nke ịkwalite uto osisi gụnyere nnweta nri dị mma, modulation nke phytohormone, biocontrol, na nnagide nrụgide nke biotic na abiotic) nke ndị egwuregwu dị iche iche na-eme n'ime rhizosphere, dị ka nje bacteria na-akwalite uto osisi (PGPB) na fungus dị ka Trichoderma na mycorrhizae.

Ihe osise dị n'aka nri na-egosi na microorganisms rhizosphere dị ka nje bacteria na-akwalite uto osisi (PGPB), arbuscular mycorrhizal fungi (AMF), na fungi sitere na ụdị Trichoderma spp. nwere ike ịmepụta mmekọrịta bara uru na osisi, na-akwalite uto na mmepe nke osisi, na'ịbawanye usoro nchebe nke osisi megide pathogens, na-eme ka ihe oriri na-edozi ahụ, ma na-emeziwanye nnagide na nrụgide gburugburu ebe obibi dị iche iche. Rhizosphere microorganisms nwere ike imetụta ibe ha, na njikọ nke PGPB + PGPB (dịka, nje bacteria nitrogen-fixing dị ka Rhizobium spp. na Pseudomonas fluorescens), AMF + PGPPB, na Trichoderma + PGP B nwere ike inwe mmetụta jikọrọ aka na uto na ahụike osisi, na-enye osisi uru dị elu iji merie nrụgide biotic na abiotic. Akụ́ ndị a tụrụ atụ na-egosi mmekọrịta bara uru n'etiti AMF na Trichoderma.

 
Ọdịdị nke N-fixing nodules nke rhizobia kpatara [40]
Formation of N-fixing nodules induced by rhizobia[25]
 
Nzaghachi osisi na nje bacteria na rhizosphere[40]
Plant responses to bacteria in the rhizosphere[25]

Nkwurịta okwu

dezie
 
Nkwurịta okwu na rhizosphere Ndị na-eme ihe nkiri na mmekọrịta na rhizospheric: Nkwurọrịta n'etiti alaeze na n'ime alaeze na-emetụta osisi na ụmụ irighiri ihe na rhizospheres, gụnyere ọrụ rhizobia.[41] VOCs = volatile organic compounds; PGP = na-akwalite uto osisi; AMF = arbuscular mycorrhizal fungi
VOCs = volatile organic compounds; PGP = plant growth promoting; AMF = arbuscular mycorrhizal fungi

Nkwurịta okwu na-abụkarị ihe ndabere nke mmekọrịta biotic. Ugboro ugboro, ihe karịrị ihe abụọ nwere ike isonye na nkwurịta okwu, na-akpata netwọk dị mgbagwoju anya nke crosstalking. Ọganihu ndị na-adịbeghị anya na nyocha mmekọrịta osisi na microbe egosiwo na nkwurịta okwu, ma n'etiti alaeze ma n'ime alaeze, bụ nke ọtụtụ ihe na-akpụzi. N'ọnọdụ a, rhizosphere (ya bụ, ala dị nso na mgbọrọgwụ) na-enye otu microhabitat ebe mmekọrịta dị mgbagwoju anya na-eme. Mpaghara dị mgbagwoju anya nke mejupụtara rhizosphere nwere ike ịhọrọ maka ụfọdụ ndị microbial, nke na-eme ka ọ dị mma na niche a pụrụ iche. N'etiti ha, rhizobia apụtala dị ka akụkụ dị mkpa nke microbiome rhizospheric. A na-ahụ Rhizospheric crosstalk na mmekọrịta rhizobium-legume. symbiosis a bụ usoro dị mgbagwoju anya nke na-agụnye mgbaàmà nke nwere ike ịkpụzi site na exudates rhizospheric nke osisi na ihe mejupụtara microbiome. Mmekọrịta nke rhizobia guzobere na ihe ndị ọzọ dị ndụ rhizospheric, tinyere mmetụta nke ihe ndị gbara ya gburugburu, na-arụ ọrụ ha bara uru na ahụike osisi.

Prokaryotes na eukaryotes emekọrịtawo ruo ọtụtụ nde afọ, na-agbanwe ma na-emeziwanye usoro nkwurịta okwu ha. Dị ka Hauser tụrụ aro na 1996, ihe mgbaàmà nke ihe ndị dị ndụ na mgbanwe nke ozi bụ akụkụ nke nkọwa nke nkwurịta okwu, ebe a na-ewere ihe mgbaàmà n'onwe ha dị ka "ihe ọ bụla nwere ike ịkpụzi omume nke ihe ndị ahụ dị ndụ". [26][27][28] N'ihi ya, akara nwere ike ịgbanwe ma nọgide na-enwe ekele maka mmekọrịta dị n'etiti ndị na-emepụta akara na ndị na-anata. Mgbe ahụ, imekọ ihe ọnụ na mmezi ahụike bụ ihe ndabere nke nkwurịta okwu nke ihe ndị dị ndụ.[29]

N'otu ebe, ndị mmadụ n'otu n'otu nwere ike iso ọtụtụ ndị mmekọ kwurịta okwu ma na-emekọrịta ihe, na ọdịdị nke mmekọrịta nwere ike ikpebi ọnụahịa na uru dịgasị iche iche maka onye mmekọ, dị ka ahịa nke ihe ndị dị ndụ.[30] Enwere ike ịgbanwere ọtụtụ mgbaàmà gụnyere osisi ahụ n'onwe ya, ụmụ ahụhụ, fungus, na microbes. Ihe a niile na-ewere ọnọdụ na gburugburu ebe obibi dị elu. Dị ka ọ na-adịkarị, nkwurịta okwu bụ nsonaazụ nke mmeghachi omume kemịkal nke mkpụrụ ndụ na mkpụrụ ndụ ndị ọzọ. Ihe mgbaàmà ndị a na-emetụta ma metabolism na transcription nke mkpụrụ ndụ ihe Nkọwa na-eme ka ọtụtụ usoro nchịkwa rụọ ọrụ.

 
Mgbọrọgwụ, nke ọ bụla nwere ọtụtụ ijeri nje bacteria Rhizobiaceae

Ugboro ugboro na rhizosphere, ihe karịrị ihe abụọ dị ndụ (na ụdị) nwere ike isonye na nkwurịta okwu, na-akpata netwọk dị mgbagwoju anya nke mmekọrịta na mkparịta ụka nke na-emetụta ahụike nke ndị mmekọ niile na-ekere òkè. Ya mere, enwere ike iwere gburugburu ebe obibi a dị ka ebe ọkụ maka ọtụtụ mgbanwe mgbaàmà n'etiti alaeze, nke na-agụnye obodo microbial metụtara osisi (rhizobiome). Ihe mejupụtara obodo microbial na-abụkarị nke ọtụtụ narị metabolites wepụtara n'ime ala site na mgbọrọgwụ osisi, nke na-emekarị ka mmekọrịta ya na gburugburu ebe obibi na abiotic dị mfe. Ọtụtụ mgbe, osisi ahụ nwere ike ịgbanwe ọdịiche ha dabere na uru dị na uto na ahụike, dịka na rhizobacteria na-akwalite uto osisi.[31] Ka o sina dị, ọnụ ọgụgụ dị ukwuu nke ihe oriri nke osisi ahụ na-enye nwere ike ịmasị ihe ndị na-ebute ọrịa, nke nwere ike iji ngwaahịa osisi mee ihe maka ndụ ha na rhizosphere.[32]

Ọ na-anọgide na-abụ ihe ezi uche dị na ya na osisi na-arụ ọrụ dị mkpa na ihe nkiri rhizosphere.[33] N'ezie, n'ihi akara kemịkal na-ebute site na exudates bara ọgaranya nke mgbọrọgwụ osisi wepụtara, ọtụtụ microbes nwere ike ibu ụzọ biri na rhizosphere wee jiri nwayọọ nwayọọ banye na mgbọrọgwụ na anụ ahụ osisi n'ozuzu ya (endophytes).[34] Ma ọ bụghị ya, ha nwere ike ịchịkwa osisi ahụ na-eme ka mmekọrịta na-adịgide adịgide ma baa uru.[35] Ka ọ dị ugbu a, emeela ọtụtụ nnyocha banyere ihe ndị sitere na mgbọrọgwụ.[31][36][37]

Mkparịta ụka a ma ama nke osisi na microbe na ihe nkiri rhizosphere, nke na-ekpebi uru ndị mmekọ na ndị na-apụtaghị ìhè, ka a na-ekwu maka ya n'ụzọ ziri ezi na mbido 1904 mgbe Hiltner kọwara mmekọrịta symbiotic n'etiti legumes na rhizobia.[26] Njikọ a bụ usoro a kapịrị ọnụ nke mkpụrụ ndụ ihe nketa na akara nkwurịta okwu kemịkal bụ nke osisi-bacterium. Na mmekọrịta mmekọrịta a, rhizobia na-emetụta uto nke onye nwe ya n'ụzọ dị mma n'ihi usoro nitrogen fixation ma n'otu oge ahụ nwere ike irite uru site na ihe oriri nke osisi ahụ nyere.

A mụọla symbiosis a nke ọma n'ime iri afọ ndị na-adịbeghị anya, ọtụtụ ọmụmụ gbasara nkwurịta okwu na mgbaàmà n'etiti ndị mmekọ abụọ ahụ na nzọụkwụ dị iche iche nke symbiosis (site na ọrịa mgbọrọgwụ ruo na mmepe nke nodule) akọwapụtara.[38][39] Otú ọ dị, ihe ọmụma banyere nzọụkwụ mbụ nke rhizosphere colonization, ya bụ akara mmeghe na mgbọrọgwụ, ka na-adịghị mma. Ka o sina dị, data na-arịwanye elu egosila mkpa intraspecies na nkwukọrịta multispecies n'etiti ihe ndị dị na rhizospheric maka imeziwanye mmekọrịta rhizobia-legumes. Na mgbakwunye, egosila na rhizobia bụ akụkụ nke rhizosphere nke ọtụtụ osisi na-abụghị ahịhịa ebe ha nwere ike ịrụ ọrụ dị ka ihe na-akwalite uto osisi, na-eweghachi ọrụ dị mkpa na microbiome nke osisi.[40]

Ụzọ e si eme ya

dezie

Ndị na-esonụ bụ ụfọdụ ụzọ a na-ejikarị eme ihe ma ọ bụ nke na-adọrọ mmasị na nyocha rhizosphere. Ọtụtụ n'ime usoro ndị a gụnyere ma ule nke usoro mgbọrọgwụ na ule ụlọ nyocha site na iji gburugburu ebe obibi iji mee nnwale, dị ka mkpebi pH.[41]

  • Nnyocha dị elu
  • Usoro dị elu: 16S rRNA Amplicon, Metagenomics, Metatranscriptomics
  • Ụzọ Ọdịbendị Na-adabere
  • Ihe oyiyi mgbọrọgwụ
  • Ntinye aha isotopic
  • Nnyocha Enzyme
  • Obere igwefoto rhizotron
  • Ụzọ dị iche iche e ji chọpụta mmegharị mmiri na rhizosphere dịka microelectrodes na usoro agar maka pH na microsampling nke ihe rhizosphere [41]
  • Pyrolysis-field ionization mass spectrometry na-enye ohere maka spectromety nke ubi ugbo ịchọta fulvic na humic acid na ihe ndị fọdụrụ (mmadụ) na ọmụmụ ụfọdụ ma gbasaa na ihe ndị dị n'ozuzu na ọrụ ndị ọzọ na-adịbeghị anya.[42][8]
 
Ihe atụ nke rhizosphere A = nje bacteria na-eri amoeba; BL = nje bacteria nwere ike; BU = nje bacteria enweghị ike; RC = carbon sitere na mgbọrọgwụ; SR = mkpụrụ ndụ ntutu isi; F = fungal hyphae; N = nematode worm. [58][55] A = nje bacteria na-eri amoeba; BL = nje bacteria nwere ike; BU = nje bacteria enweghị ike; RC = carbon sitere na mgbọrọgwụ; SR = mkpụrụ ndụ ntutu isi; F = fungal hyphae; N = nematode worm.[41]
 
Nhazi ụlọ uto maka ịmụ mmekọrịta rhizosphere (A) Rhizotron / Rhizobox set up, (B) Rhizobx nwere akụkụ-compartment, (C) mgbọrọgwụ mgbọrọgwụ; a modular nhọrọ na-egosi ebe a ga-etolite osisi ahụ n'ime oghere dị iche ma tinye ya mgbe e mesịrị n'ime isi ụlọ nyocha, inset ala ebe a na-egosi a modular set up rotary mat na rhizx, (E) Mycorrhizal compartments, (F) [1] (A) Rhizotron / Rhizobox set up, (B) Rhizobx nwere akụkụ-compartment, (C) mgbọrọgwụ mgbọrọgwụ; nhọrọ modular na-egosi ebe a ga-etolite osisi ahụ na ngalaba dị iche ma tinye ya mgbe e mesịrị n'ime isi ụlọ nyocha, inset nwere ike igosi nhọrọ modular set up,, (D) ala ala dị larịị na rhizobox, (E) Mycorrhizal, (F) usoro nkewa-mgbọrọgwụ gosipụtara ebe a site na mgbọrọgwụ na mgbọrọ ndụ Nylon;

Hụkwa

dezie
  • Nkwurịta okwu osisi na osisi site na netwọk mycorrhizal
  • Biomantle nke ala
  • Mmetụta iku ume n'ala
  • Rhizobacteria
  • Mgbọrọgwụ mgbọrọgwụ

Ebem si dee

dezie
  1. 1.0 1.1 Grayston (March 1998). "Selective influence of plant species on microbial diversity in the rhizosphere". Soil Biology and Biochemistry 30 (3): 369–378. DOI:10.1016/S0038-0717(97)00124-7.  Kpọpụta njehie: Invalid <ref> tag; name "Grayston1998" defined multiple times with different content
  2. 2.0 2.1 McNear Jr. (2013). "The Rhizosphere - roots, soil and everything in between". Nature Education 4 (3): 1.  Kpọpụta njehie: Invalid <ref> tag; name "McNear2013" defined multiple times with different content
  3. Hiltner, L. (1904) "Ueber neuere Erfahrungen und Probleme auf dem Gebiete derBodenbakteriologie und unter besonderer BerUcksichtigung der Grundungung und Brache. Arb Deut Landw Gesell, 98: 57-78.
  4. Hinsinger (November 2005). "Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes" (in en). New Phytologist 168 (2): 293–303. DOI:10.1111/j.1469-8137.2005.01512.x. ISSN 1469-8137. PMID 16219069. 
  5. Czarnes (2000). "Root- and microbial-derived mucilages affect soil structure and water transport". European Journal of Soil Science 51 (3): 435. DOI:10.1046/j.1365-2389.2000.00327.x. 
  6. Bérard (2020). "Exopolysaccharides in the rhizosphere: A comparative study of extraction methods. Application to their quantification in Mediterranean soils" (in en). Soil Biology and Biochemistry 149: 107961. DOI:10.1016/j.soilbio.2020.107961. 
  7. Le Gall (2021). "Increased exopolysaccharide production and microbial activity affect soil water retention and field performance of tomato under water deficit". Rhizosphere 19: 100408. DOI:10.1016/j.rhisph.2021.100408. ISSN 2452-2198. 
  8. 8.0 8.1 Schlichting (2009). "New evidence for the molecular–chemical diversity of potato plant rhizodeposits obtained by pyrolysis–field Ionisation mass spectrometry" (in en). Phytochemical Analysis 20 (1): 1–13. DOI:10.1002/pca.1080. ISSN 1099-1565. PMID 18618895.  Kpọpụta njehie: Invalid <ref> tag; name "Schlichting2009" defined multiple times with different content
  9. Stinson (2006-04-25). "Invasive Plant Suppresses the Growth of Native Tree Seedlings by Disrupting Belowground Mutualisms". PLOS Biology 4 (5). DOI:10.1371/journal.pbio.0040140. ISSN 1545-7885. PMID 16623597. 
  10. Jansson (2014-05-12). "The microbial ecology of permafrost". Nature Reviews Microbiology 12 (6): 414–425. DOI:10.1038/nrmicro3262. ISSN 1740-1526. PMID 24814065. 
  11. Mackelprang (2016-06-29). "Permafrost Meta-Omics and Climate Change". Annual Review of Earth and Planetary Sciences 44 (1): 439–462. DOI:10.1146/annurev-earth-060614-105126. ISSN 0084-6597. 
  12. Kaye (1997). "Competition for nitrogen between plants and soil microorganisms". Trends in Ecology & Evolution 12 (4): 139–43. DOI:10.1016/S0169-5347(97)01001-X. PMID 21238010. 
  13. Owen (2001). "Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition" (in en). Soil Biology and Biochemistry 33 (4–5): 651–657. DOI:10.1016/s0038-0717(00)00209-1. 
  14. Bodegom (August 2001). "Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere". Applied and Environmental Microbiology 67 (8): 3586–3597. DOI:10.1128/AEM.67.8.3586-3597.2001. PMID 11472935. 
  15. McCann (22 October 1998). "Weak trophic interactions and the balance of nature". Nature 395 (6704): 794–798. DOI:10.1038/27427. 
  16. Besserer (2006-06-27). "Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria". PLOS Biology 4 (7). DOI:10.1371/journal.pbio.0040226. ISSN 1545-7885. PMID 16787107. 
  17. Andreas Brachmann, Martin Parniske (2006). "The Most Widespread Symbiosis on Earth". PLOS Biology 4 (7): e239. DOI:10.1371/journal.pbio.0040239. PMID 16822096. 
  18. Tian (2012). "Plant-activated bacterial receptor adenylate cyclases modulate epidermal infection in the Sinorhizobium meliloti-Medicago symbiosis". Proceedings of the National Academy of Sciences 109 (17): 6751–6756. DOI:10.1073/pnas.1120260109. PMID 22493242. 
  19. Sims (1984). "Diurnal and seasonal variations in nitrogenase activity (C2H2 reduction) of rice roots". Soil Biology and Biochemistry 16 (1): 15–18. DOI:10.1016/0038-0717(84)90118-4. 
  20. 20.0 20.1 Weller (1988). "Biological Control of Soilborne Plant Pathogens in the Rhizosphere with Bacteria". Annual Review of Phytopathology 26 (1): 379–407. DOI:10.1146/annurev.py.26.090188.002115.  Kpọpụta njehie: Invalid <ref> tag; name "Weller1988" defined multiple times with different content
  21. Bianciotto (1996). "Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria". Protoplasma 193 (1–4): 123–131. DOI:10.1007/BF01276640. 
  22. Lambers (August 2009). "Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective". Plant Soil 321 (1–2): 83–115. DOI:10.1007/s11104-009-0042-x. 
  23. Bais (2004). "How plants communicate using the underground information superhighway". Trends in Plant Science 9 (1): 26–32. DOI:10.1016/j.tplants.2003.11.008. PMID 14729216. 
  24. Howell (2003). "Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts". Plant Disease 87 (1): 4–10. DOI:10.1094/PDIS.2003.87.1.4. PMID 30812698. 
  25. 25.0 25.1 25.2 Kpọpụta njehie: Invalid <ref> tag; no text was provided for refs named Santoyo2021
  26. 26.0 26.1 Hartmann (2008). "Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research". Plant and Soil 312 (1–2): 7–14. DOI:10.1007/s11104-007-9514-z.  Kpọpụta njehie: Invalid <ref> tag; name "Hartmann2008" defined multiple times with different content
  27. Maynard-Smith (6 November 2003). Animal Signals. Oxford University Press. ISBN 978-0-19-852685-8. OCLC 54460090. 
  28. Scott-Phillips (2008). "Defining biological communication". Journal of Evolutionary Biology 21 (2): 387–395. DOI:10.1111/j.1420-9101.2007.01497.x. PMID 18205776. 
  29. Zahavi (2008). "The handicap principle and signalling in collaborative systems", in Hughes: Sociobiology of Communication. Oxford University Press, 1–10. 
  30. Werner (2015). "Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism". Proceedings of the National Academy of Sciences 112 (33): 10262–10269. DOI:10.1073/pnas.1424030112. PMID 26041807. 
  31. 31.0 31.1 Hartmann (2009). "Plant-driven selection of microbes". Plant and Soil 321 (1–2): 235–257. DOI:10.1007/s11104-008-9814-y.  Kpọpụta njehie: Invalid <ref> tag; name "Hartmann2009" defined multiple times with different content
  32. Rasmann (2016). "Root signals that mediate mutualistic interactions in the rhizosphere". Current Opinion in Plant Biology 32: 62–68. DOI:10.1016/j.pbi.2016.06.017. PMID 27393937. 
  33. Bending (2017). "The Rhizopshere and Its Microorganisms", Encyclopedia of Applied Plant Sciences, 347–351. DOI:10.1016/B978-0-12-394807-6.00165-9. ISBN 9780123948083. 
  34. Hardoim (2008). "Properties of bacterial endophytes and their proposed role in plant growth". Trends in Microbiology 16 (10): 463–471. DOI:10.1016/j.tim.2008.07.008. PMID 18789693. 
  35. Chi (2005). "Ascending Migration of Endophytic Rhizobia, from Roots to Leaves, inside Rice Plants and Assessment of Benefits to Rice Growth Physiology". Applied and Environmental Microbiology 71 (11): 7271–7278. DOI:10.1128/AEM.71.11.7271-7278.2005. PMID 16269768. 
  36. Bulgarelli (2013). "Structure and Functions of the Bacterial Microbiota of Plants". Annual Review of Plant Biology 64: 807–838. DOI:10.1146/annurev-arplant-050312-120106. PMID 23373698. 
  37. Venturi (2016). "Signaling in the Rhizosphere". Trends in Plant Science 21 (3): 187–198. DOI:10.1016/j.tplants.2016.01.005. PMID 26832945. 
  38. Oldroyd (2011). "The Rules of Engagement in the Legume-Rhizobial Symbiosis". Annual Review of Genetics 45: 119–144. DOI:10.1146/annurev-genet-110410-132549. PMID 21838550. 
  39. Oldroyd (2013). "Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants". Nature Reviews Microbiology 11 (4): 252–263. DOI:10.1038/nrmicro2990. PMID 23493145. 
  40. Yeoh (2016). "The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application". Environmental Microbiology 18 (5): 1338–1351. DOI:10.1111/1462-2920.12925. PMID 26032777. 
  41. 41.0 41.1 41.2 Gregory (1999). "New approaches to studying chemical and physical changes in the rhizosphere: an overview". Plant and Soil 211: 1–9. DOI:10.1023/A:1004547401951.  Kpọpụta njehie: Invalid <ref> tag; name "Gregory1999" defined multiple times with different content
  42. Schlten (April 1993). "Pyrolysis-field ionization mass spectrometry of agricultural soils and humic substances: Effect of cropping systems and influence of the mineral matrix" (in en). Plant and Soil 151 (1): 77–90. DOI:10.1007/BF00010788. ISSN 0032-079X.