Ihe ọkụkụ dị n'elu

  N'ọrụ ugbo, ihe ọkụkụ na-ekpuchi bụ osisi ndị a na-akụ iji kpuchie ala karịa maka ebumnuche nke iwe ihe ubi. Ihe ọkụkụ na-ahụ maka mbuze nke ala, ọmụmụ ala, ịdị mma ala, mmiri, ahịhịa, pests, ọrịa, ụdị dị iche iche na anụ ọhịa n'ime usoro agroecosystem-usoro gburugburu ebe obibi na-achịkwa ma na-akpụzi ya. Ihe ọkụkụ kpuchiri ekpuchi nwere ike ịbawanye ọrụ microbial n'ime ala, nke na-enwe mmetụta dị mma na ịnweta nitrogen, ntinye nitrogen na ihe ọkụkụ a chọrọ, na ihe ọkụkụ. Ihe ọkụkụ na-ekpuchi ihe ọkụkụ na-ebelata ihe ize ndụ mmetọ mmiri ma wepụ CO2 site na ikuku . Ihe ọkụkụ na-ekpuchi nwere ike ịbụ ihe ọkụkụ na-adịghị agwụ agwụ nke a kụrụ mgbe ọ na-ewe ihe ubi ego. Ihe ubi kpuchiri ekpuchi bụ ihe ọkụkụ ndị nọọsụ n'ihi na ha na-abawanye ndụ nke ihe ọkụkụ bụ isi a na-egbute, ma na-akụkarị n'oge oyi. Na United States, ihe ubi mkpuchi nwere ike na-eri ihe ruru $35 kwa acre.[1]

Ihe ọkụkụ na-ekpuchi osisi radish na mbido Nọvemba

Mgbọrọgwụ nke ala

dezie

Ọ bụ ezie na ihe ọkụkụ nwere ike ịrụ ọtụtụ ọrụ na agroecosystem n'otu oge, a na-akụkarị ha naanị maka ebumnuche nke igbochi mbuze ala. Mgbasa ala bụ usoro nke nwere ike belata ikike mmepụta nke agroecosystem. Ihe ọkụkụ na-ekpuchi ala na-ebelata ọnwụ site n'imeziwanye ọdịdị ala na ịbawanye infiltration, na-echebe ala, na-agbasa ike mmiri ozuzo, ma na-ebepụ ọsọ nke mmegharị mmiri n'elu ala.[2] Ihe ọkụkụ na-ekpuchi ihe na-egbochi ọsọ nke Mmiri ozuzo tupu ọ metụta n'elu ala, na-egide ịwụfu ala na ịwụfu mmiri.[3] Tụkwasị na nke a, nnukwu netwọk mgbọrọgwụ ihe ọkụkụ na-enyere aka ijikọta ala n'ebe ma na-eme ka oghere ala dịkwuo elu, na-emepụta netwọk ebe obibi kwesịrị ekwesị maka macrofauna ala.[4] Ọ na-eme ka ala dị mma maka afọ ole na ole sochirinụ.

Nchịkwa ala na-eme nri

dezie

Otu n'ime ihe ndị bụ isi a na-eji ihe ọkụkụ eme ihe bụ ịkwalite ọmụmụ ala. A na-akpọ ụdị ihe ọkụkụ ndị a dị ka "nri ahịhịa ndụ". A na-eji ha ejikwa ọtụtụ ihe na-edozi ahụ na micronutrients ala. N'ime ihe oriri dị iche iche, mmetụta na-ekpuchi ihe ọkụkụ na-enwe na njikwa nitrogen enwetawo nlebara anya kachasị site n'aka ndị nchọpụta na ndị ọrụ ugbo n'ihi na nitrogen na-abụkarị ihe na-egbochi ihe oriri na-emepụta ihe ọkụkụ.

Ọtụtụ mgbe, a na-akụ ahịhịa ahịhịa ndụ ndụ maka oge a kapịrị ọnụ, wee kọọ ya n'okpuru tupu ha eruo ntozu oke iji meziwanye ọmụmụ na ịdị mma nke ala. Osisi ndị fọdụrụ na-egbochi ala ka ọ ghara ikpochapụ.

Ihe ọkụkụ na-acha akwụkwọ ndụ akwụkwọ ndụ na-abụkarị leguminus, nke pụtara na ha bụ akụkụ nke ezinụlọ pea, Fabaceae. Ezinụlọ a pụrụ iche n'ihi na ụdị niile dị na ya setịpụrụ pods, dị ka bean, lentil, lupins na alfalfa. Ihe ọkụkụ na-ekpuchi ihe ọkụkụ na nitrogen dị elu ma nwee ike inye nitrogen achọrọ maka mmepụta ihe ọkụkụ. N'ọrụ ugbo nkịtị, a na-etinyekarị nitrogen a n'ụdị fatịlaịza kemịkal. N'ọrụ ugbo organic, ntinye nitrogen nwere ike iwere ụdị fatịlaịza organic, compost, mkpuchi mkpụrụ osisi, na njikọ site na ihe ọkụkụ na-ekpuchi legume.[5] A na-akpọ àgwà a nke ihe ọkụkụ na-ekpuchi ihe ọkụkụ uru.[6]

Àgwà ọzọ pụrụ iche maka ihe ọkụkụ leguminous bụ na ha na-emepụta mmekọrịta symbiotic na nje bacteria rhizobial nke bi na nodules mgbọrọgwụ legume. Lupins na-ejide site na microorganism Bradyrhizobium sp. (Lupinus) A na-ahụ Bradyrhizobia dị ka microsymbionts na ihe ọkụkụ ndị ọzọ (Argyrolobium, Lotus, Ornithopus, Akasia, Lupinus) nke sitere na Mediterenian. Nje bacteria ndị a na-agbanwe gas nitrogen ikuku (N2) na-adịghị adị na ammonium (NH + 4) site na usoro nke nitrogen fixation. N'ozuzu, ihe ọkụkụ na-ekpuchi ihe na-eme ka ọrụ microbial nke ala dịkwuo elu, nke nwere mmetụta dị mma na nitrogen dị n'ime ala, nitrogen na-enweta na ihe ọkụkụ ndị a na-achọ, na ihe ọkpọ.[5]

Tupu ọbịbịa nke Usoro Haber-Bosch, usoro na-eji ike eme ihe mepụtara iji mee ka ụlọ ọrụ nitrogen na-etinye ihe na-eme ka mmiri nitrogen, ọtụtụ nitrogen e webatara na gburugburu ebe obibi sitere na ntinye nitrogen.[7] Ụfọdụ ndị ọkà mmụta sayensị kwenyere na njigide nitrogen zuru ebe niile, nke a na-enweta karịsịa site na iji ihe ọkụkụ kpuchie, bụ naanị ihe ọzọ na-eme ka njigide nitrogenian n'ụlọ ọrụ na mgbalị iji lekọta ma ọ bụ mụbaa ọkwa mmepụta nri n'ọdịnihu.[8][9] A katọrọ njikọta nitrogen nke ụlọ ọrụ dị ka isi iyi na-adịghị adịgide adịgide nke nitrogen maka mmepụta nri n'ihi ịdabere na ike mmanụ ala na mmetụta gburugburu ebe obibi metụtara iji fatịlaịza nitrogen eme ihe n'ọrụ ugbo.[10] Mmetụta ndị dị otú ahụ na gburugburu ebe obibi gụnyere nitrogen fatịlaịza furu efu n'ime ụzọ mmiri, nke nwere ike iduga eutrophication (nchekwa nri) na hypoxia (mbibi oxygen) nke nnukwu mmiri.

Ihe atụ nke a bụ na Mississippi Valley Basin, ebe ọtụtụ afọ nke fatịlaịza nitrogen na-abanye na mmiri site na mmepụta ugbo emeela ka "ebe nwụrụ anwụ" nke oge okpomọkụ na Gulf of Mexico nke ruru ebe karịrị 22,000 square kilomita na 2017. [11][12] Mgbagwoju anya nke ihe ndị dị ndụ n'oké osimiri na mpaghara a anọwo na-ebelata n'ihi ya.

Tinyere iwebata nitrogen n'ime agroecosystems site na njikọta nitrogen, a na-eji ụdị ihe ọkụkụ mkpuchi a maara dị ka "ihe ọkụkụ na-ejide" iji jide ma megharịa nitrogen n'ala. Ihe ọkụkụ ndị a na-ejide na-ewe nitrogen fọdụrụ site na uto nke ihe ọkụkụ gara aga, na-egbochi ya ka ọ ghara ịla n'iyi site na leaching, ma ọ bụ gas denitrification ma ọ bụ volatilization. [13]

Ihe ọkụkụ ndị a na-ejide na-abụkarị ụdị ọka na-eto ngwa ngwa kwa afọ nke na-eme ka nitrogen dị n'ala.[14] A na-ahapụ nitrogen a na-ejikọta na ihe ọkụkụ a na-egbute n'ime ala ozugbo a na-etinye ihe ọkụkụ ego dị ka nsị akwụkwọ ndụ akwụkwọ ndụ ma ọ bụ n'ụzọ ọzọ na-amalite ire ure.

Ihe atụ nke iji nsị na-acha akwụkwọ ndụ akwụkwọ ndụ sitere na Naijiria, ebe achọpụtara na mkpuchi Mucuna pruriens (beansị velvet) na-abawanye nnweta nke phosphorus n'ime ala mgbe onye ọrụ ugbo na-etinye nkume phosphate.[15]

Nchịkwa nke ịdị mma ala

dezie

Ihe ọkụkụ mkpuchi nwekwara ike imeziwanye ogo ala site n'ịbawanye ọkwa ihe ọkụkụ site na ntinye nke ihe ọkụkụ mkpofu ka oge na-aga. Mmụba nke Ihe ndị dị ndụ'ala na-eme ka Ọdịdị ala dịkwuo mma yana mmiri na ihe na-edozi ahụ na ikike nke ala.[16] Ọ pụkwara iduga n'ịbawanye carbon sequestration n'ala, nke a kwalite dị ka atụmatụ iji nyere aka gbochie ịrị elu nke carbon dioxide ikuku.[17][18][19]

A na-achịkwa ịdị mma ala iji mepụta ọnọdụ kachasị mma maka ihe ọkụkụ iji too. Isi ihe na-emetụta ọdịdị ala bụ nnu ala, pH, nguzozi microorganism, na mgbochi nke Mmetọ ala. A na-ahụ na ọ bụrụ na a na-elekọta ọdịdị ala nke ọma ma na-elekọta ya, ọ na-eme ntọala maka gburugburu ebe obibi dị mma ma na-amị mkpụrụ. Otu onye nwere ike ịmepụta ma jikwaa ihe ọkụkụ nke ga-emepụta gburugburu ebe obibi dị mma ruo oge ụfọdụ.[20]

Nchịkwa mmiri

dezie

Site n'ibelata mbuze ala, ihe ọkụkụ na-ekpuchi ihe na-ebelata ọnụego na oke mmiri nke na-apụ n'ọhịa, nke ga-eweta ihe ize ndụ gburugburu ebe obibi na ụzọ mmiri na gburugburu ebe obibi.[21] Ihe ọkụkụ na-ekpuchi ihe na-arụ ọrụ dị ka ihe mgbochi anụ ahụ n'etiti mmiri ozuzo na ala, na-enye ohere ka mmiri ozuzo jiri nwayọọ nwayọọ na-agbadata site na profaịlụ ala. Ọzọkwa, dị ka ekwuru n'elu, mkpuchi mgbọrọgwụ ihe ọkụkụ na-eme ka e nwee oghere ala, nke, na mgbakwunye na ịkwalite ebe obibi macrofauna na-enye ụzọ maka mmiri iji nyochaa site na profaịlụ ala kama ịpụ n'ọhịa dị ka mmiri na-aga n'elu. Site na mmụba nke mmiri, enwere ike imeziwanye ikike maka nchekwa mmiri n'ala na recharge nke aquifers.[22]

Obere oge tupu e gbuo ihe ọkụkụ mkpuchi (site n'omume ndị dị otú ahụ gụnyere ịkpụ, ịkọ, ịkpụ, ịtụgharị, ma ọ bụ itinye ọgwụ herbicide) ha nwere nnukwu mmiri. Mgbe a na-etinye ihe ọkụkụ na ala, ma ọ bụ hapụ ya n'elu ala, ọ na-emekarị ka mmiri dị n'ala. Na agroecosystems ebe mmiri maka mmepụta ihe ọkụkụ dị ụkọ, enwere ike iji ihe ọkụkụ kpuchie dị ka mulch iji chekwaa mmiri site na ndò na ime ka ala jụọ oyi. Nke a na-ebelata mmiri nke ala ma na-enyere aka ichekwa ihe na-edozi ahụ n'ala.[23]

Nchịkwa ahịhịa

dezie
 
Ihe ọkụkụ na South Dakota

Ogwe ihe ọkụkụ na-ekpuchi ihe na-emekarị ka ha na ahịhịa na-asọ mpi nke ọma n'oge uto ihe ọkụkụ, ma nwee ike igbochi ọtụtụ mkpụrụ ahịhịhịa ndị na-etolite site na imecha ndụ ha na ịmụ nwa. Ọ bụrụ na a na-eme ka ihe ọkụkụ ahụ dị larịị n'elu ala kama itinye ya n'ime ala dị ka nsị na-acha akwụkwọ ndụ akwụkwọ ndụ mgbe ọ kwụsịrị, ọ nwere ike ịmepụta ihe fọrọ nke nta ka ọ bụrụ ihe a na-apụghị ịbanye. Nke a na-ebelata n'ụzọ dị egwu transmittance light na mkpụrụ ahịhịa, nke n'ọtụtụ ọnọdụ na-ebelatara ọnụ ọgụgụ mkpụrụ ahịhi.[24] Ọzọkwa, ọbụlagodi mgbe mkpụrụ ahịhịa na-epulite, ha na-enwekarị ike echekwara maka uto tupu ha ewulite ikike nhazi dị mkpa iji mebie ihe ọkụkụ mkpuchi. A na-akpọkarị nke a mmetụta mkpuchi ihe ọkụkụ.[25]

Ụfọdụ ihe ọkụkụ na-ekpuchi ihe na-egbochi ahịhịa ma n'oge uto ma mgbe ọ nwụsịrị.[26] N'oge uto, ihe ọkụkụ ndị a na-ekpuchi ihe ọkụkụ na-asọ mpi nke ukwuu na ahịhịa maka ohere, ìhè, na ihe na-edozi ahụ, mgbe ha nwụsịrị, ha na-eme ka ahịhịhịa na-esote site n'ịmepụta ihe mkpuchi n'elu ala.[27] ọdịda ọmụmaatụ, ndị na-eme nchọpụta chọpụtara na mgbe ị na-eji Melilotus officinalis (yellow sweetclover) dị ka ihe ọkụkụ mkpuchi na usoro nkwụsịtụ ka mma (ebe a na-akpachara anya ka oge nkwụsịtụ dị mma site na ọtụtụ usoro nchịkwa dị iche iche, gụnyere ịkụ ihe ọkụkụ na-ekpuchi), ahịhịa biomass bụ naanị n'etiti 1-12% nke ngụkọta biomass guzo ọtọ na njedebe nke oge uto mkpuchi.[26] Ọzọkwa, mgbe mkpuchi ihe ọkụkụ kwụsịrị, ihe ndị fọdụrụ na-acha odo odo na-egbochi ahịhịa ruo ọkwa 75-97% dị ala karịa na usoro fallow (enweghị yellow sweetclover).

 
Ihe ọkụkụ na-ekpuchi ntutu (vicia villosa)

Na mgbakwunye na mmegide ahịhịa na-adabere na asọmpi ma ọ bụ nke anụ ahụ, a maara na ụfọdụ ihe ọkụkụ na-ekpuchi ahịhịhịa site na allelopathy.[28] Nke a na-eme mgbe ụfọdụ ihe ọkụkụ na-ekpuchi ihe ọkụkụ nke na-emebi, ma ọ bụ na-egbochi ntolite mkpụrụ nke, ụdị osisi ndị ọzọ. Ụfọdụ ihe atụ a ma ama nke ihe ọkụkụ allelopathic bụ Secale cereale (rye), Vicia villosa (vetch nwere ntutu), Trifolium pratense (red clover), Sorghum bicolor (sorghum-sudangrass), na ụdị dị n'ezinụlọ Brassicaceae, ọkachasị mustard.[29] N'otu nnyocha, a chọpụtara na ihe ndị fọdụrụ na rye kpuchiri nyere n'etiti 80% na 95% nchịkwa nke ahịhịa ahịhịhịa na-acha akwụkwọ ndụ akwụkwọ ndụ mgbe ejiri ya dị ka mulch n'oge mmepụta nke ihe ọkụkụ ego dị iche iche dị ka soybean, ụtaba, ọka, na sunflower.[30] N'ozuzu, ihe ọkụkụ mkpuchi anaghị achọ ịsọ mpi na ihe ọkụkụ ego, ebe ọ bụ na enwere ike ịzụlite ha ma kwụsị ha n'oge oge tupu e guzobe ihe ọkụkụ ndị ọzọ.[27]

N'ime nnyocha 2010 nke Ọrụ Nnyocha Ọrụ Ugbo (ARS) wepụtara, [31] ndị ọkà mmụta sayensị nyochara otú ọnụego mkpụrụ osisi rye na usoro ịkụ osisi si emetụta mmepụta ihe ọkụkụ. Nsonaazụ na-egosi na ịkụ ihe karịrị pound kwa acre nke rye mere ka mmepụta nke ihe ọkụkụ kpuchie ya belata ọnụ ọgụgụ nke ahịhịa. Otu ihe ahụ bụ eziokwu mgbe ndị ọkà mmụta sayensị nwalere ọnụego mkpụrụ osisi na legumes na oats; ọnụ ọgụgụ dị elu nke mkpụrụ osisi a kụrụ kwa acre belatara ọnụ ọgụgụ ahịhịa ma mụbaa mmepụta nke legume na oat. Usoro ịkụ osisi, nke nwere ma ọ bụ ahịrị ọdịnala ma ọ bụ usoro grid, o yighị ka ọ nwere mmetụta dị ukwuu na mmepụta ihe ọkụkụ ma ọ bụ na mmepụta ahịhịa na ihe ọkụkụ ọ bụla. Ndị ọkà mmụta sayensị ARS kwubiri na mmụba nke ịgha mkpụrụ nwere ike ịbụ usoro dị irè nke ịchịkwa ahịhịa.[32]

Mahadum Cornell Sustainable Cropping Systems Lab weputara ọmụmụ na Mee 2023 na-enyocha ịdị irè nke ịkụ ihe na-enwe mmetụta oge na njikọta usoro nke ụdị mkpuchi ihe ọkụkụ na ụdị mkpụrụ ego yiri ya. Onye nyocha mbụ, Uriel Menalled, chọpụtara na ọ bụrụ na a na-akụ mkpuchi na mkpụrụ ego dị ka nchọpụta nyocha ya siri kwuo, ndị ọrụ ugbo nwere ike ibelata uto ahịhịa site na 99%. Ọmụmụ ihe a na-enye ndị ọrụ ugbo usoro nhazi zuru oke iji chọpụta ihe ọkụkụ nke ga-adabara n'usoro ihe ọkụkụ dị ugbu a. Na nchikota, ihe si na nchọcha a na-akwado nghọta na enwere ike ijikọ njikọ phylogenetic iji gbochie uto ahịhịa.[33]

Nchịkwa ọrịa

dezie

N'otu ụzọ ahụ na allelopathic Njirimara nke cover kụrụ nwere ike igbochi ata, ha nwekwara ike imebi ọrịa cycles na ibelata ndị bi na nje na fungal ọrịa, na parasitic nematodes. Ezinụlọ Brassicaceae, dị ka mọstad, ka egosiri n'ọtụtụ ebe iji gbochie ndị ọrịa fungal site na mwepụta nke kemịkalụ na-egbu egbu na-emekarị n'oge mmebi nke ogige glucosinolate n'ime anụ ahụ sel ha.. [34]

Nchịkwa nke ahụhụ

dezie

A na-eji ihe ọkụkụ ụfọdụ eme ihe dị ka ihe a na-akpọ "ihe ọkụkụ ọnyà", iji dọta ụmụ ahụhụ site na ihe ọkụkụ bara uru na ihe ahụhụ ahụ na-ahụ dị ka ebe obibi dị mma.[35] Enwere ike ịmepụta ebe a na-akụ ihe ọkụkụ n'ime ihe ọkụkụ, n'ime ugbo, ma ọ bụ n'ime ala. N'ọtụtụ ọnọdụ, a na-akụ ihe ọkụkụ ọnyà n'otu oge ahụ a na-emepụta ihe ọkụkụ nri. Enwere ike iji ọgwụ ahụhụ gwọọ obere ebe a na-etinye ihe ọkụkụ ndị a ozugbo a dọtara ụmụ ahụhụ n'ọnyà ahụ n'ọnụ ọgụgụ buru ibu iji belata ọnụ ọgụgụ ndị na-egbu egbu. N'ime usoro ụfọdụ nke ihe ndị dị ndụ, ndị ọrụ ugbo na-eji nnukwu ihe na-eme ka ikuku na-adọkpụ ihe ọkụkụ ahụ iji wepụ ihe ndị na-egbu egbu n'ime osisi ma pụọ n'ọhịa. A na-atụ aro usoro a maka iji nyere aka ịchịkwa ụmụ ahụhụ lygus na mmepụta strawberry. Ihe atụ ọzọ nke ihe ọkụkụ na-eguzogide nematode bụ mustard ọcha (<i id="mw8g">Sinapis alba</i>) na radish (<i id="mw9A">Raphanus sativus</i>) . Enwere ike ịzụlite ha mgbe isi (ọka) na ọnyà nematodes, dịka ọmụmaatụ, beet cyst nematode na Columbian root knot nematode.[36][37][38] Mgbe ha toro, nematodes na-apụta ma na-adọrọ mmasị na mgbọrọgwụ. Mgbe ha banyere na mgbọrọgwụ, ha enweghị ike ịmụba na mgbọrọ ndụ n'ihi mmeghachi omume na-eguzogide nke osisi ahụ. N'ihi ya, ọnụ ọgụgụ nematode na-ebelata nke ukwuu, site na 70-99%, dabere na ụdị na oge ọrụ ugbo.

A na-eji ihe ọkụkụ ndị ọzọ kpuchie iji dọta ndị na-eri anụ ndị na-egbu egbu site n'iṅomi ihe ndị dị na ebe obibi ha. Nke a bụ ụdị nchịkwa nke ihe ndị dị ndụ a maara dị ka mmụba ebe obibi, mana a na-enweta ya site na iji ihe ọkụkụ kpuchie ya.[39] A na-agwakọta nchọpụta banyere mmekọrịta dị n'etiti ọnụnọ ihe ọkụkụ na-ekpuchi ihe na-egbu egbu, na-atụ aro mkpa ọ dị maka ozi zuru ezu gbasara ụdị ihe ọkụkụ mkpuchi na usoro nchịkwa iji gbakwunye usoro nchịkwa nje. Dịka ọmụmaatụ, a maara ahụhụ na-eri ibe ya bụ Euseius tularensis (Congdon) ka ọ na-enyere aka ịchịkwa ihe na-egbu egbu na Central California citrus orchards. Ndị na-eme nchọpụta chọpụtara na ịkụ ọtụtụ ihe ọkụkụ dị iche iche (dị ka bell bean, woollypod vetch, New Zealand white clover, na Austrian winter pea) nyere pollen zuru ezu dị ka isi iyi nri iji mee ka mmụba oge na ọnụ ọgụgụ E. tularensis, nke nwere ike iwebata nrụgide anụ oriri zuru ezu iji belata ọnụ ọgụgụ nke citrus thrips.[40]

Ụdị dị iche iche na anụ ọhịa

dezie

Ọ bụ ezie na a na-ejikarị ihe ọkụkụ kpuchie iji mezuo otu n'ime ebumnuche ndị a tụlere n'elu, ha na-abụkarị ebe obibi maka anụ ọhịa. Ojiji nke ihe ọkụkụ mkpuchi na-agbakwunye ma ọ dịkarịa ala otu akụkụ ọzọ nke ụdị osisi dị iche iche na ntụgharị ihe ọkụkụ ego. Ebe ọ bụ na ihe ọkụkụ mkpuchi anaghị abụkarị ihe ọkụkụ bara uru, njikwa ya na-adịkarị obere, na-enye windo nke mmetụta mmadụ "dị nro" na ugbo ahụ. Nchịkwa a "aka-apụ", jikọtara ya na mmụba dị iche iche n'ugbo nke e mepụtara site na nguzobe nke ihe ọkụkụ mkpuchi, na-eme ka o kwe omume na usoro nri dị mgbagwoju anya ga-etolite iji kwado ọkwa dị elu nke ụdị anụ ọhịa dị iche iche.[41]

N'otu nnyocha, ndị na-eme nchọpụta tụnyere arthropod na ụdị ụdị songbird na iji ubi eme ihe n'etiti omenala na ikpuchi ubi owu a kpụrụ akpụ na Southern United States. A na-akụ ihe mkpuchi ahụ n'ubi owu na-akụ ka ọ bụrụ klova, nke a hapụrụ ka ọ na-eto n'etiti ahịrị owu n'oge oge ntolite owu na-eto eto (mkpụrụ osisi strapcover). N'oge njem na oge ọmụmụ, ha chọpụtara na njupụta nnụnụ egwu dị okpukpu 7-20 dị elu n'ubi owu nwere ihe mkpuchi clover jikọtara ọnụ karịa na ubi owu. Arthropod ụba na biomass dịkwa elu karịa n'ubi mkpuchi c-clover n'ọtụtụ oge ọmụmụ nnụnụ egwu, bụ nke ekwuru na mmụba nke nectar ifuru sitere na klova. Ihe ọkụkụ nke clover na-eme ka ebe obibi nnụnụ na-eto eto site n'inye ebe mkpuchi, yana nri na-abawanye site na ọnụ ọgụgụ arthropod dị elu..[42]


Hụkwa

dezie

 

  • Agroecology
  • Ọrịa Allelopathy
  • Nchịkwa nke ihe ndị dị ndụ
  • Mkpụrụ osisi na-acha akwụkwọ ndụ akwụkwọ ndụ
  • Ihe mkpuchi ala
  • Okirikiri nitrogen
  • Ntinye nitrogen
  • Ihe ndị sitere n'okike
  • Mmetọ ala

Ebem si dee

dezie
  1. Weise. "Ancient farming practice makes a comeback as climate change puts pressure on crops", USA Today, 28 December 2022. Retrieved on 28 December 2022.
  2. Panagos (December 2015). "The new assessment of soil loss by water erosion in Europe" (in en). Environmental Science & Policy 54: 438–447. DOI:10.1016/j.envsci.2015.08.012. 
  3. Römkens (1990). "Surface sealing and infiltration", in Anderson: Process studies in hillslope hydrology. John Wiley and Sons, Ltd., 127–172. ISBN 0471927147. 
  4. Tomlin (1995). "Earthworms and their influence on soil structure and infiltration", in Hendrix: Earthworm Ecology and Biogeography in North America. Lewis Publishers, 159–183. 
  5. 5.0 5.1 White (2022-04-28). "Winter cover crops increased nitrogen availability and efficient use during eight years of intensive organic vegetable production" (in en). PLOS ONE 17 (4): e0267757. DOI:10.1371/journal.pone.0267757. ISSN 1932-6203. PMID 35482753.  Kpọpụta njehie: Invalid <ref> tag; name ":0" defined multiple times with different content
  6. Thiessen-Martens (2005). "Legume cover crops with winter cereals in southern Manitoba: Fertilizer replacement values for oat". Canadian Journal of Plant Science 85 (3): 645–648. DOI:10.4141/p04-114. 
  7. Galloway (1995). "Nitrogen-Fixation - Anthropogenic Enhancement-Environmental Response". Global Biogeochemical Cycles 9 (2): 235–252. DOI:10.1029/95gb00158. 
  8. Bohlool (1992). "Biological nitrogen fixation for sustainable agriculture: A perspective". Plant and Soil 141 (1–2): 1–11. DOI:10.1007/bf00011307. 
  9. Peoples (1992). "Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture". Plant and Soil 141 (1–2): 13–39. DOI:10.1007/BF00011308. 
  10. Jensen (2003). "How can increased use of biological N-2 fixation in agriculture benefit the environment?". Plant and Soil 252 (1): 177–186. DOI:10.1023/A:1024189029226. 
  11. Rabalais (2002). "Gulf of Mexico hypoxia, aka "The dead zone"". Annual Review of Ecology and Systematics 33: 235–263. DOI:10.1146/annurev.ecolsys.33.010802.150513. 
  12. NOAA: Gulf of Mexico 'dead zone' is the largest ever measured. National Oceanic and Atmospheric Administration (NOAA) (August 3, 2017). Archived from the original on August 2, 2017. Retrieved on August 3, 2017.
  13. Thorup-Kristensen (2003). "Catch crops and green manures as biological tools in nitrogen management in temperate zones". Advances in Agronomy 79: 227–302. DOI:10.1016/S0065-2113(02)79005-6. 
  14. Ditsch (1991). "Nonleguminous Cover Crop Management for Residual N Recovery and Subsequent Crop Yields". Journal of Fertilizer Issues 8: 6–13. 
  15. Vanlauwe (2000). "Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: response by Mucuna pruriens, Lablab purpureus and maize". Soil Biology & Biochemistry 32 (14): 2063–2077. DOI:10.1016/s0038-0717(00)00149-8. 
  16. Patrick (1957). "The effects of longtime use of winter cover crops on certain physical properties of commerce loam". Soil Science Society of America Journal 21 (4): 366–368. DOI:10.2136/sssaj1957.03615995002100040004x. 
  17. Kuo (1997). "Winter cover crop effects on soil organic carbon and carbohydrate in soil". Soil Science Society of America Journal 61 (1): 145–152. DOI:10.2136/sssaj1997.03615995006100010022x. 
  18. Sainju (2002). "Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA". Soil & Tillage Research 63 (3–4): 167–179. DOI:10.1016/s0167-1987(01)00244-6. 
  19. Lal (2003). "Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry". Land Degradation & Development 14 (3): 309–322. DOI:10.1002/ldr.562. 
  20. Managing Soil Health: Concepts and Practices (en). extension.psu.edu. Retrieved on 2023-07-14.
  21. Dabney (2001). "Using winter cover crops to improve soil quality and water quality". Communications in Soil Science and Plant Analysis 32 (7–8): 1221–1250. DOI:10.1081/css-100104110. 
  22. Joyce (2002). "Infiltration and soil water storage under winter cover cropping in California's Sacramento Valley". Transactions of the ASAE 45 (2): 315–326. DOI:10.13031/2013.8526. 
  23. Arlauskienė (2023-08-16). "Cover Crop Yield, Nutrient Storage and Release under Different Cropping Technologies in the Sustainable Agrosystems". Plants 12 (16): 2966. DOI:10.3390/plants12162966. ISSN 2223-7747. PMID 37631177. 
  24. Teasdale (1993). "Interaction of light, soil moisture, and temperature with weed suppression by hairy vetch residue". Weed Science 41: 46–51. DOI:10.1017/S0043174500057568. 
  25. Kobayashi (2003). "Evaluation of smothering effect of four legume covers on Pennisetum polystachion ssp. setosum (Swartz) Brunken". Weed Biology and Management 3 (4): 222–227. DOI:10.1046/j.1444-6162.2003.00107.x. 
  26. 26.0 26.1 Blackshaw (2001). "Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow". Weed Science 49 (3): 406–413. DOI:[0406:ysgmai2.0.co;2 10.1614/0043-1745(2001)049[0406:ysgmai]2.0.co;2]. 
  27. 27.0 27.1 Gazoulis (2022-10-10). "Νarrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla (Hedysarum coronarium L.) Biomass Production" (in en). Energies 15 (19): 7425. DOI:10.3390/en15197425. ISSN 1996-1073.  Kpọpụta njehie: Invalid <ref> tag; name ":1" defined multiple times with different content
  28. Creamer (1996). "Mechanisms of weed suppression in cover crop-based production systems". HortScience 31 (3): 410–413. DOI:10.21273/HORTSCI.31.3.410. 
  29. Haramoto (2004). "Brassica cover cropping for weed management: A review". Renewable Agriculture and Food Systems 19 (4): 187–198. DOI:10.1079/raf200490. 
  30. Nagabhushana (2001). "Allelopathic cover crops to reduce herbicide use in sustainable agricultural systems". Allelopathy Journal 8: 133–146. 
  31. In Organic Cover Crops, More Seeds Means Fewer Weeds : USDA ARS. www.ars.usda.gov. Retrieved on 2024-01-15.
  32. In Organic Cover Crops, More Seeds Means Fewer Weeds. USDA Agricultural Research Service (January 25, 2010).
  33. Menalled (2023). "Ecological Weed Management for Field Crop Production". ProQuest: 102–126. 
  34. Lazzeri (2001). "Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp and total fungal population in soil". HortScience 36 (7): 1283–1289. DOI:10.21273/HORTSCI.36.7.1283. 
  35. Shelton (2006). "Concepts and applications of trap cropping in pest management". Annual Review of Entomology 51: 285–308. DOI:10.1146/annurev.ento.51.110104.150959. PMID 16332213. 
  36. Lelivelt (1993-02-01). "Transfer of resistance to the beet cyst nematode (Heterodera Schachtii Schm.) from Sinapis alba L. (white mustard) to the Brassica napus L. gene pool by means of sexual and somatic hybridization". Theoretical and Applied Genetics 85 (6–7): 688–696. DOI:10.1007/BF00225006. ISSN 0040-5752. PMID 24196037. 
  37. Smith (2004-06-01). "Reproduction of Heterodera schachtii Schmidt on Resistant Mustard, Radish, and Sugar Beet Cultivars". Journal of Nematology 36 (2): 123–130. ISSN 0022-300X. PMID 19262796. 
  38. Teklu (2014-05-28). "Relative susceptibilities of five fodder radish varieties (Raphanus sativus var. Oleiformis) to Meloidogyne chitwoodi". Nematology 16 (5): 577–590. DOI:10.1163/15685411-00002789. ISSN 1568-5411. 
  39. Bugg (1994). "Using Cover Crops to Manage Arthropod Pests of Orchards - a Review". Agriculture, Ecosystems & Environment 50 (1): 11–28. DOI:10.1016/0167-8809(94)90121-x. 
  40. Grafton-Cardwell (1999). "Leguminous cover crops to enhance population development of Euseius tularensis (Acari : Phytoseiidae) in citrus". Biological Control 16 (1): 73–80. DOI:10.1006/bcon.1999.0732. 
  41. Freemark (2001). "Birds on organic and conventional farms in Ontario: partitioning effects of habitat and practices on species composition and abundance". Biological Conservation 101 (3): 337–350. DOI:10.1016/s0006-3207(01)00079-9. 
  42. Cederbaum (2004). "Effects of alternative cotton agriculture on avian and arthropod populations". Conservation Biology 18 (5): 1272–1282. DOI:10.1111/j.1523-1739.2004.00385.x.