Igwe nje na-agba ọgwụ
Microbial inoculants, nke a makwaara dị ka inoculants ala ma ọ bụ bioinoculants, bụ mmezi ọrụ ugbo na-eji rhizosphericic ma ọ bụ endophytic microbes bara uru iji kwalite ahụike osisi. Ọtụtụ n'ime ụmụ nje ndị ahụ metụtara na-emekọrịta mmekọrịta symbiotic na ihe ọkụkụ a na-achọsi ike ebe akụkụ abụọ ahụ na-erite uru (mutualism). Ọ bụ ezie na a na-etinye inoculants microbial iji meziwanye nri ihe ọkụkụ, a pụkwara iji ha kwalite uto osisi site na-akpali mmepụta hormone osisi.[1][2] Ọ bụ ezie na inoculants nje bacteria na fungal na-adịkarị, a na-amụbawanye ọmụmụ ihe na archaea iji kwalite uto osisi. [1]
Nnyocha banyere uru nke inoculants na ọrụ ugbo gbatịrị karịa ike ha dị ka ihe na-emepụta biofertilizers. Inoculants microbial nwere ike ibute nguzogide sistemu enwetara (SAR) nke ụdị ihe ọkụkụ n'ọtụtụ ọrịa a na-ahụkarị n'ihe ọkụkụ (na-enye mgbochi megide nje nje). Ka ọ dị ugbu a egosipụtara SAR maka powdery mildew (Blumeria graminis f. sp. hordei, Heitefuss, 2001), were-all (Gaeumannomyces graminis var. tritici, Khaosaad et al., 2007), ntụpọ akwukwo (Pseudomonas syringae, Ramos Solano et al. al., 2008) na mgbọrọgwụ ire ere (Fusarium culmorum, Waller et al. 2005)
Agbanyeghị, a na-amatawanye na inoculants microbial na-agbanwekarị obodo microbial nke ala (Mawarda et al., 2020).
Nje bacteria
dezieRhizobacterial inoculators
dezieRhizobacteria ndị a na-ejikarị eme ihe dị ka ihe na-eme ka nitrogen na-agbanye ọgwụ na-agụnye nitrogen-fixers, phosphate-solubilisers na nje bacteria ndị ọzọ na-arụ ọrụ nke na-emeziwanye nnweta nke nitrogen na phosphorus na osisi ahụ. A na-akpọkarị nje bacteria dị otú ahụ dị ka osisi na-akwalite uto rhizobacteria (PGPR).
Nje bacteria na-ejikọta nitrogen
dezieIhe rhizobacteria a na-ejikarị eme ihe bụ Rhizobium na mkpụrụ ndụ ihe jikọrọ ya. Rhizobium bụ nje na-edozi nitrogen nke na-etolite mkpakọrịta symbiotic n'ime nodules na mgbọrọgwụ nke mkpo. Nke a na-abawanye nri nitrogen ndị ọbịa ma dị mkpa maka ịkụ soybean, chickpeas na ọtụtụ ihe ọkụkụ ndị ọzọ. Maka ihe ọkụkụ na-abụghị nke ahịhịa, Azospirillum egosila na ọ bara uru n'ọnọdụ ụfọdụ maka nhazi nitrogen na nri osisi.[2]
Maka ihe ubi ọka, diazotrophic rhizobacteria amụbawo ihe ọkụkụ, [4] mkpụrụ ọka (Caballero-Mellado et al., 1992), nitrogen na phosphorus, [4] na nitrogen (Caballero-Mellado et al., 1992), phosphorus ( Caballero-Mellado et al., 1992; Belimov et al., 1995) na potassium ọdịnaya (Caballero-Mellado et al., 1992). Rhizobacteria na-ebi na mgbọrọgwụ mgbọrọgwụ, na-ejikọta ya na mkpo.
Nje bacteria na-agbaze phosphate
dezieIji meziwanye nri nri phosphorus, ojiji nke nje bacteria phosphate-solubilising (PSB) dị ka Agrobacterium radiobacter enwetawokwa nlebara anya (Belimov et al., 1995a; 1995b; Singh & Kapoor, 1999). Dị ka aha ahụ na-egosi, PSB bụ nje bacteria na-enwere onwe ya nke na-akụda phosphates ala inorganic ka ọ bụrụ ụdị dị mfe nke na-eme ka osisi buru ibu.
Ihe na-egbochi nje fungus
dezieA na-akpọ mmekọrịta mmekọrịta dị n'etiti fungi na mgbọrọgwụ osisi dị ka njikọ Mycorrhiza.[3] Mmekọrịta symbiotic a dị n'ihe fọrọ nke nta ka ọ bụrụ osisi niile dị n'ala ma na-enye ma osisi ma fungus uru maka ịdị ndụ.[3] Osisi ahụ nwere ike inye ihe karịrị 5-30% nke mmepụta ike ya na fungus iji gbanwere maka ịbawanye ebe mgbọrọgwụ na-amịkọrọ na hyphae nke na-enye osisi ahụ ohere ịnweta ihe oriri ọ gaghị enwe ike inweta. [3][4] mycorrhizae abụọ a na-ahụkarị bụ arbuscular mycorrhizae ectomycorrhizae. A na-ahụkarị njikọ Ectomycorrhizae na ụdị osisi, ma nwee mmetụta dị ala maka usoro ọrụ ugbo.[5]
Mycorrhiza nke osisi
dezieArbuscular mycorrhiza (AM) enwetala nlebara anya dị ka mmezigharị ọrụ ugbo maka ikike ya ịnweta ma nye osisi phosphorus.[5] N'okpuru usoro na-ebelata uto nke ejiri ngwakọta nke AM Fungi AM Rhizobacteria mee ka ọ dị mma, a na-enweta tomato nke e nyere site na 100% ọmụmụ na 70% ọmụmụ. [6] Mbelata 30% a na itinye fatịlaịza nwere ike inye aka belata mmetọ ihe oriri, ma nyere aka gbatịkwuo ihe onwunwe mineral dị ka phosphorus (Peak phosphorum). Mmetụta ndị ọzọ gụnyere mmụba nke nnagide nnu, nnagide ụkọ mmiri ozuzo, na nnagide nchọpụta nke nsị metal.[7][8][9]
Ndị mmekọ fungus
dezieỌ bụ naanị ọgwụ nje fungus nwere ike ịba uru na osisi ndị na-elekọta ya. Inoculation jikọtara ya na mmezigharị ndị ọzọ nwere ike imeziwanye ọnọdụ. Arbuscular mycorrhizal inoculation jikọtara ya na compost bụ mmezigharị ezinụlọ a na-ahụkarị maka ogige onwe onye, ọrụ ugbo, na ebe a na-elekọta ụmụaka. A chọpụtala na njikọta a nwekwara ike ịkwalite ọrụ microbial n'ala nke igwu ala metụtara.[10]
Ụfọdụ ndị mmekọ fungal na-eme nke ọma na mpaghara ụfọdụ ma ọ bụ na ihe ọkụkụ ụfọdụ. Arbuscular mycorrhizal inoculation jikọtara ya na uto osisi na-akwalite nje bacteria mere ka ọ na-amị mkpụrụ dị elu ma na-eto ngwa ngwa na upland rice paddys.[11]
Uto ọka ka mma mgbe emezigharịrị arbuscular mycorrhizae na biochar. Mgbanwe a nwekwara ike belata cadmium site na ihe ọkụkụ.[12]
Iji ya eme ihe na-egbu mgbochi
dezieEnwere ike iji ọgwụ mgbochi fungus mee ihe na ma ọ bụ na-enweghị mmezigharị ndị ọzọ na ogige onwe onye, homesteads, mmepụta ugbo, ebe a na-azụ ụmụ, na ọrụ mweghachi ala.
Ihe ndị na-egbochi ọrịa
dezieE gosipụtara njikọta nke ụdị nke Plant Growth Promoting Rhizobacteria (PGPR) iji baara osikapa na ọka bali uru.[13][14] Isi uru sitere na ọgwụ mgbochi abụọ bụ mmụba nke ihe oriri na-edozi ahụ site na ala na fatịlaịza.[13] E gosikwara ọtụtụ ụdị inoculant iji mụbaa ọrụ nitrogenase zuru oke ma e jiri ya tụnyere otu ụdị inoculants, ọbụlagodi mgbe naanị otu ụdị bụ diazotrophic.[13][15][16]
PGPR na arbuscular mycorrhizae na njikọta nwere ike ịba uru n'ịbawanye uto ọka wit n'ala na-adịghị edozi ahụ na imeziwanye nitrogen-extraction site na ala fatịlaịza. [17][18]
Hụkwa
dezie
Ebem si dee
dezie- ↑ Chow (2022-09-20). "An Archaic Approach to a Modern Issue: Endophytic Archaea for Sustainable Agriculture" (in en). Current Microbiology 79 (11): 322. DOI:10.1007/s00284-022-03016-y. ISSN 1432-0991. PMID 36125558.
- ↑ Bashan (1997). "Azospirillum – plant relationships: Environmental and physiological advances (1990–1996)". Canadian Journal of Microbiology 43 (2): 103–121. DOI:10.1139/m97-015.
- ↑ 3.0 3.1 3.2 3.3 3.4 Brady, Nyle C. (2010). Elements of the nature and properties of soils, Weil, Ray R., Third, 343–346. ISBN 9780135014332. OCLC 276340542. Kpọpụta njehie: Invalid
<ref>
tag; name ":02" defined multiple times with different content - ↑ Mycorrhiza | David Sylvia's Web Resources. sites.psu.edu. Retrieved on 2019-10-24.
- ↑ 5.0 5.1 Chapin (2011). Principles of Terrestrial Ecosystem Ecology. New York, NY: Springer New York, 243–244. DOI:10.1007/978-1-4419-9504-9. ISBN 9781441995032. Kpọpụta njehie: Invalid
<ref>
tag; name "Chapin 2011 243–244" defined multiple times with different content - ↑ Adesemoye (November 2009). "Plant Growth-Promoting Rhizobacteria Allow Reduced Application Rates of Chemical Fertilizers". Microbial Ecology 58 (4): 921–929. DOI:10.1007/s00248-009-9531-y. ISSN 0095-3628. PMID 19466478.
- ↑ Hirrel, M.C. and Gerdemann, J.W., 1980. Improved Growth of Onion and Bell Pepper in Saline Soils by Two Vesicular-Arbuscular Mycorrhizal Fungi 1. Soil Science Society of America Journal, 44(3), pp.654-655.
- ↑ Ferrazzano, S. and Williamson, P. (2013). Benefits of mycorrhizal inoculation in reintroduction of endangered plant species under drought conditions. Journal of Arid Environments, 98, pp.123-125.
- ↑ Firmin, S., Labidi, S., Fontaine, J., Laruelle, F., Tisserant, B., Nsanganwimana, F., Pourrut, B., Dalpé, Y., Grandmougin, A., Douay, F., Shirali, P., Verdin, A. and Lounès-Hadj Sahraoui, A. (2015). Arbuscular mycorrhizal fungal inoculation protects Miscanthus×giganteus against trace element toxicity in a highly metal-contaminated site. Science of the Total Environment, 527-528, pp.91-99.
- ↑ Kohler, J., Caravaca, F., Azcón, R., Díaz, G. and Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, pp.42-48.
- ↑ Diedhiou, A., Mbaye, F., Mbodj, D., Faye, M., Pignoly, S., Ndoye, I., Djaman, K., Gaye, S., Kane, A., Laplaze, L., Manneh, B. and Champion, A. (2016). Field Trials Reveal Ecotype-Specific Responses to Mycorrhizal Inoculation in Rice. PLOS ONE, 11(12), p.e0167014.
- ↑ Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, pp.495-503.
- ↑ 13.0 13.1 13.2 Belimov, A. A., Kojemiakov, A. P. & Chuvarliyeva, C. V. (1995a) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilising bacteria. Plant and Soil, 173, 29-37.
- ↑ Kennedy (2001). "Biofertilisers in action". Functional Plant Biology 28 (9): 825. DOI:10.1071/pp01169. ISSN 1445-4408.
- ↑ Khammas (August 1992). "Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species". Canadian Journal of Microbiology 38 (8): 794–797. DOI:10.1139/m92-129. ISSN 0008-4166. PMID 1458371.
- ↑ Cacciari (July 1989). "Response to oxygen of diazotrophic Azospirillum brasilense ? Arthrobacter giacomelloi mixed batch culture". Archives of Microbiology 152 (2): 111–114. DOI:10.1007/bf00456086. ISSN 0302-8933.
- ↑ Singh, S. & Kapoor, K. K. (1999) Inoculation with phosphate-solubilising microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in sandy soil. Biology and Fertility of Soils, 28, 139-144.
- ↑ Galal, Y. G. M., El-Ghandour, I. A., Osman, M. E. & Abdel Raouf, A. M. N. (2003), The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15n techniques, Symbiosis, 34(2), 171-183.