100% eneji emeghariri ọhụrụ
100% ike emeghariri ọhụrụ pụtara inweta ike niile site na ihe onwunwe a na-emeghari. Mgbalị iji 100% ike emeghariri ọhụrụ maka ọkụ eletrik, okpomọkụ, ịjụ oyi na njem na-akpali mgbanwe ihu igwe, mmetọ na nsogbu gburugburu ebe obibi ndị ọzọ, yana nchegbu akụ na ụba na nchekwa ike. Ịgbanwe ngụkọta nke ike isi ụwa na-enye na isi mmalite na-agbanwe agbanwe chọrọ mgbanwe nke usoro ike, ebe ọ bụ na ọtụtụ ike nke taa sitere na mmanụ ala ndị adịghị emeghari emeghari
Nnyocha banyere isiokwu a bụ ihe ọhụrụ, na nyocha ole na ole e bipụtara tupu afọ 2009, mana enwetala nlebara anya na-arịwanye elu n'afọ ndị na-adịbeghị anya. Ihe ka ọtụtụ n'ọmụmụ ihe na-egosi na mgbanwe zuru ụwa ọnụ gaa na 100% renewable energy gafee ngalaba niile nke ike, okpomọkụ, njem na ụlọ ọrụ bụ ihe ga-ekwe omume ma nwee ike ịga nke ọma na akụ na ụba. A na-ahụ usoro zuru oke dị ka akụkụ dị nke usoro ike 100% eneji emeghariri ma dabere na echiche "na enwere ike ịchọta ngwọta kachasị mma naanị ma ọ bụrụ na mmadụ na-elekwasị anya na njikọ aka n'etiti ngalaba" nke usoro ike dịka ọkụ eletrik, okpompe, njem ma ọ bụ ụlọ ọrụ.[4][5][6][7][8]
Ihe kwere omume
dezieEnweghị otu nkọwa maka usoro ike 100% na-emeghari ohụrụ ka a nabatara n'ofe akwụkwọ ndị e bipụtara.[8]
Nnyocha ndị a e mere n'oge na-adịbeghị anya na-egosi na mgbanwe zuru ụwa ọnụ gaa na 100% eneji ndị a na-emeghari ohụrụ gafee ngalaba niile nke ike, okpomọkụ, njem na desalination tupu 2050 ga-ekwe omume.[4][5][6][7] Dabere na nyocha nke akwụkwọ 181 ndị ọgbọ nyochara na 100% renewable energy nke e bipụtara ruo 2018, n'ọtụtụ akwụkwọ niile na-eme ka ike teknụzụ na akụ na ụba nke usoro 100% eneji a na-emeghari ohuru pụta ìhè. "[8] Nnyocha nke akwụkwọ 97 e bipụtara kemgbe afọ 2004 ma na-elekwasị anya n'àgwàetiti kwubiri na n'ofe ọmụmụ ihe 100% eneji a na-emeghari ohụrụ chọpụtara na ọ bụ "nke nwere ike ime na nke nwere ike ime n'ụzọ akụ na ụba".[9] Nnyocha 2022 chọpụtara na nkwubi okwu bụ isi nke ọtụtụ akwụkwọ dị n'ọhịa bụ na 100% renewables nwere ike ime n'ụwa niile na ọnụ ala.
Mgbanwe eneji
dezie100% renewable energy bụ usoro ike ebe a na-enweta ike niile sitere na isi mmalite ike na-emeghariri ohụrụ. Mgbalị iji 100% renewable energy maka ọkụ eletrik, okpomọkụ / ịjụ oyi na njem na-akpali okpomọkụ ụwa, mmetọ na nsogbu gburugburu ebe obibi ndị ọzọ, yana nchegbu akụ na ụba na nchekwa ike. Ịgbanwe ngụkọta nke ike isi ụwa na-enye na isi mmalite a na-emeghari chọrọ nke usoro ike, ebe ọ bụ na ọtụtụ ike nke taa sitere na mmanụ ala ndị na-adịghị emeghari.
Akụkọ ihe mere eme
dezieA tụrụ aro iji ike 100% a na-emeghari emeghari mee ihe na akwụkwọ na Science nke onye Danish physicist Bent Sørensen bipụtara na 1975, nke ọtụtụ atụmatụ ndị ọzọ sochiri.[10][11] N'afọ 1976, onye na-enyocha iwu ike Amory Lovins chepụtara okwu ahụ bụ "ụzọ ike dị nro" iji kọwaa ọdịnihu ọzọ ebe arụmọrụ ike na isi mmalite ike na-agbanwe agbanwe na-anọchi usoro ike dị n'etiti nke dabeere na mmanụ ala na nuklia.[12]
Ebe ndị nwere ihe fọrọ nke nta ka ọ bụrụ 100% eneji a na-emeghari ohụrụ
dezieEbe ndị na-esonụ na-ezute 90% ma ọ bụ karịa nkezi ọkụ eletrik ha chọrọ kwa afọ na eneji na-emeghari ohụrụ (ndepụta na-ezughị ezu):
Ebe | Onuogugu | Ike | Edensiba |
---|---|---|---|
Albania | 2,821,977 (2011) | Electrik mmiri | |
Aller-Leine Valley, Germany | 75,000 (2012) | 63.5% ikuku, 30% biogaasi, 10.7% mmiri, 3.1% anyanwụ | [13][14] |
Aspen, Colorado, United States | 6,658 (2010) | Hydroelectric, wind and solar and geothermal | [15] |
Bhutan | 727,145 (2017) | Electik mmiri nke ukwuu; na-ebupụ 70% nke mmepụta ya n'ihi oke ike emepụtara; enweghị ihe na-emeputa ike mmanụ ọkụ. | [16] |
Burlington, Vermont, United States | 42,417 (2010) | 35.3% mmiri, 35.3% osisi, 27.9% ikuku, 1.4% photovoltaic anyanwu | [17] |
British Columbia, Canada | 4,700,000 (2017) | 97% ekectrik mmiri | [18] |
Centralia, Washington, United States | 17,216 | 90.6% mmiri, 7.9% nuclear | [19] |
Chelan Cty., Washington, United States | 76,533 | 100% ike emeghariri ọhụrụ mebere nke 99.98% electrik mmiri na 0.02% ike ikuku. | [20] |
Costa Rica | 4,857,000 | 99% electric a na-emeghari ohuru. electrik mmiri (90%), geothermal, ikuku na ndi ozo) | [21] |
Democratic Republic of the Congo | 84,000,000 | Ihe fọrọ nke nta ka ọ bụrụ 100% ike mmiri, mana naanị 9% nwere ike ịnweta ọkụ eletrik. | [22][23] |
Douglas Cty., Washington, United States | 41,945 | 100% mmiri | [19] |
Ethiopia | 109,224,414 (2018) | Electric mmir Kachasị (>90%). Obere ikuku, anyanwụ, na geothermal. 45% nke ndị mmadụ nwere ike nweta ọkụ eletrik dịka nke 2018, ma enwere ebumnuche ohere 100% edobere na 2017 maka 2025. | [24] |
Georgetown, Texas, United States | 70,000 | 100% - 154MW anyanwụ na ikuku dabara na njikọ grid | [25] |
Greensburg, Kansas, United States | 1400 | 100% - ifufe guzozie eguzozie na grid njikọ | [15][26] |
Iceland | 329,100 | 72% electrik mmiri, 28% geothermal, ikuku, na ike anyanwu, Ihe na-erughị 0.1% mmanụ ọkụ (dizel grid) | |
Kodiak Island, Alaska, United States | 13,448 | 80.9% elecctrik mmir, 19.8% ike ikuku, 0.3% mmanụ dizel jenerato | |
Lower Austria, Austria | 1,612,000 | 63% Electrik mmiri, 26% ikuku, 9% biomass, 2% anyanwụ | [27] |
Manitoba, Canada | 1,278,365 | 97% electrik mmir, 3% ifufe, <1% mmanụ ala (dizel na mpaghara anọ kwụsịrị), <1% gas. | [28] |
Norway | 5,140,000 | 96% electrik mmiri, 2% mmanụ ọkụ, 2% geothermal, ikuku, na ike anyanwu | |
Newfoundland and Labrador, Canada | 525,604 | 95% mmiri electrik | [29] |
Palo Alto, California, United States | 66,000 | 50% hydro, zuru ike ngwakọta nke anyanwụ, ikuku na biogas | [30] |
Paraguay | 7,010,000 | Ngalaba eletrik na Paraguay bụ 100% hydroelectricity, ihe dị ka 90% nke a na-ebupụ, 10% fọdụrụnụ na-ekpuchi ọchịchọ ụlọ. | [31] |
Pend Oreille Cty., Washington, United States | 13,354 | 97.1% mmiri | [19] |
Quebec, Canada | 8,200,000 | 99% ọkụ eletrik a na-emegharị bụ isi ike ejiri na Quebec (41%), mmanụ (38%) sochiri ya na gas (10%). | [32] |
Samsø, Denmark | 3,806 | Net karịrị 100% ike ikuku na biomass, ejikọrọ na ala ala maka nguzozi na ike ndabere | [33] |
Scotland | 5,510,000 (2022) | 97% nke ọkụ eletrik (2020) emepụtara site na mmeghari ohuru, ikuku kachasi, electrik mmiri na-esote. | [34] |
Sealand | 2 | 100% ọkụ eletrik na-emepụta site na ikuku na ike anyanwụ. | [35][36] |
Seattle, Washington, United States | 724,745 | 86% electrik mmiri, 7% ikuku, 1% biogaasi | [37][19] |
South Island, New Zealand | 1,115,000 | 98.2%electrik mmiri na 1.6% ikuku. A na-ebupụ ihe dị ka otu ụzọ n'ụzọ ise nke ọgbọ na North Island. | [38] |
Tacoma, Washington, United States | 208,100 | 85% mmiri, 6% ikuku | [19] |
Tajikistan | 8,734,951 (2016) | Mmiri mmiri na-enye ihe fọrọ nke nta ka ọ bụrụ pasent 100 nke ọkụ eletrik Tajikistan. | [39] |
Tasmania, Australia | 515,000 | Mmiri mmiri na-enye pasentị 100 nke ọkụ eletrik Tasmania. (Atụmatụ iwu na-echere maka %200 ike mmeghari ohuru site na 2040, ebe nke fọdụrụ ka a ga-eziga na ala Australia site na eriri ike ụgbọ mmiri) | [40][41] |
Tau, American Samoa | 873 (2000) | ~ 100% ike anyanwụ, yana nkwado batrị | [42] |
Tilos, Greece | 400 (winter), 3,000 (summer) | 100% ikuku na ike anyanwụ, yana nkwado batrị | [43] |
Tokelau, New Zealand | 1,411 | 93% ike anyanwụ, yana nkwado batrị yana 7% biofuel aki oyibo | [44] |
Uruguay | 3,300,000 (2013) | 94.5% ọkụ eletrik emeghari; A na-eji ike ikuku (na biomass na ike anyanwụ) gbatịa ihe nchekwa mmiri ọkụ n'ime oge ọkọchị | [45] |
Wildpoldsried, Bavaria, Germany | 2,512 (2013) | 500% ikuku, anyanwu, mmiri | [46] |
Yukon, Canada | 35,874 | 94% electric mmiri | [47] |
Nchịkọta njikọta grid
dezieN'afọ 2015, Jacobson na Delucchi, tinyere Mary Cameron na Bethany Frew, nyochara site na simulation kọmputa (Loadmatch), n'ụzọ zuru ezu otu usoro ikuku-mmiri-anyanwụ (WWS) nwere ike isi soro ike achọrọ site na nkeji ruo nkeji. Nke a mere ka o kwe omume na United States ruo afọ isii, gụnyere mgbanwe WWS site na ihe omume ihu igwe siri ike.[48] N'afọ 2017, otu ndị nchọpụta iri abọ na asaa gara n'ihu imepụta atụmatụ ahụ maka mba 139 na afọ 2018, Jacobson na Delucchi na Mary Cameron na Brian Mathiesen bipụtara nsonaazụ Loadmatch maka mpaghara 20 nke kewara mba 139 n'ụwa.[49] Dabere na nyocha a, usoro WWS nwere ike ịgbaso ihe achọrọ na mpaghara niile.[50]
Ihe omume Loadmatch na-enweta ihe dị ka usoro atụmatụ ntinye, kwa ọkara nkeji n'oge afọ 2050 2055, nke
- mkpa ike
- ikuku na-akpaghị aka na ike anyanwụ nke e buru amụma na 3D ụwa ihu igwe / ihe nlereanya ihu igwe GATOR-GCMOM[51]
- ike mmiri, geothermal, tidal na ike ebili mmiri
Hụkwa
dezie- Carbon bubble
- Enweghị ike itinye aka na carbon
- Mgbanwe ike
- Omume onwe onye na nke ndọrọ ndọrọ ọchịchị na mgbanwe ihu igwe
- Ụlọ Ọrụ Na-ahụ Maka Ike Ọhụrụ nke Mba Nile
- A na-atụ aro ike nuklia dị ka ike na-agbanwe agbanwe
- [[Timeline of sustainable energy research Templeeti:CURRENTDECADE–present|Usoro iheomume nke nyocha ike na-adịgide adịgide 2020 ugbu a]]
Edensibịa
dezie- Albert (2017). Energy Unlimited: Four Steps to 100% Renewable Energy.
- Bogdanov (2016). "North-East Asian Super Grid for 100% renewable energy supply: Optimal mix of energy technologies for electricity, gas and heat supply options". Energy Conversion and Management 110: 176–190. DOI:10.1016/j.enconman.2016.01.019.
- Breyer (2022). "On the History and Future of 100% Renewable Energy Systems Research". IEEE Access 10: 78176–78218. DOI:10.1109/ACCESS.2022.3193402.
- Breyer (2015). "North-East Asian Super Grid: Renewable energy mix and economics". Japanese Journal of Applied Physics 54 (8S1). DOI:10.7567/JJAP.54.08KJ01.
- Connolly (2016). "Smart Energy Europe :The technical and economic impact of one potential 100% renewable energy scenario for the European Union". Renewable and Sustainable Energy Reviews 60: 1634–1653. DOI:10.1016/j.rser.2016.02.025.
- Connolly (2011). "The first step towards a 100% renewable energy-system for Ireland". Applied Energy 88 (2): 502–507. DOI:10.1016/j.apenergy.2010.03.006.
- Cosic (2012). "A 100% renewable energy system in the year 2050: The case of Macedonia". Energy 48 (1): 80–87. DOI:10.1016/j.energy.2012.06.078.
- Delucchi (2011). "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies". Energy Policy 39 (3): 1170–1190. DOI:10.1016/j.enpol.2010.11.045.
- Peter Droege, 100 Per Cent Renewable. Energy Autonomy in Action. Routledge 2009, Templeeti:ISBN.
- Elliston (2012). "Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market". Energy Policy 45: 606–613. DOI:10.1016/j.enpol.2012.03.011.
- Elliston (2013). "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market". Energy Policy 59: 270–282. DOI:10.1016/j.enpol.2013.03.038.
- Elliston (2014). "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market". Renewable Energy 66: 196–204. DOI:10.1016/j.renene.2013.12.010.
- Garcia-Olivares (2012). "A global renewable mix with proven technologies and common materials". Energy Policy 41: 561–574. DOI:10.1016/j.enpol.2011.11.018.
- Glasnovica (2011). "Vision of total renewable electricity scenario". Renewable and Sustainable Energy Reviews 15 (4): 1873–1884. DOI:10.1016/j.rser.2010.12.016.
- Hansen (2019). "Status and perspectives on 100% renewable energy systems". Energy 175: 471–480. DOI:10.1016/j.energy.2019.03.092.
- Hohmeyer (2015). "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies. In". Wiley Interdisciplinary Reviews: Energy and Environment 4: 74–97. DOI:10.1002/wene.128.
- Jacobson (2011). "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials". Energy Policy 39 (3): 1154–1169. DOI:10.1016/j.enpol.2010.11.040.
- Jacobson (2015). "100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. In". Energy and Environmental Science 8 (7): 2093–2117. DOI:10.1039/c5ee01283j.
- Jacobson (2015). "Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes". Proceedings of the National Academy of Sciences 112 (49): 15060–15065. DOI:10.1073/pnas.1510028112. PMID 26598655.
- Krajacic (2011). "How to achieve a 100% RES electricity supply for Portugal?". Applied Energy 88 (2): 508–517. DOI:10.1016/j.apenergy.2010.09.006.
- Krajacic (2011). "Planning for a 100% independent energy system based on smart energy storage for integration of renewables and CO2 emissions reduction". Applied Thermal Engineering 31 (13): 2073–2083. DOI:10.1016/j.applthermaleng.2011.03.014.
- Lund (2007). "Renewable energy strategies for sustainable development". Energy 32 (6): 912–919. DOI:10.1016/j.energy.2006.10.017.
- Lund (2009). "Energy system analysis of 100% renewable energy systems - The case of Denmark in years 2030 and 2050". Energy 34 (5): 524–531. DOI:10.1016/j.energy.2008.04.003.
- Lund (2010). "The role of district heating in future renewable energy systems". Energy 35 (3): 1381–1390. DOI:10.1016/j.energy.2009.11.023.
- George Mason (2010). "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources". Energy Policy 38 (8): 3973–3984. DOI:10.1016/j.enpol.2010.03.022.
- George Mason (2013). "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand.". Energy Policy 60: 324–333. DOI:10.1016/j.enpol.2013.05.032.
- Vad Mathiesen (2011). "100% Renewable energy systems, climate mitigation and economic growth". Applied Energy 88 (2): 488–501. DOI:10.1016/j.apenergy.2010.03.001.
- Vad Mathiesen (2015). "Smart Energy Systems for coherent 100% renewable energy and transport solutions". Applied Energy 145: 139–154. DOI:10.1016/j.apenergy.2015.01.075.
- REN21 (2016). Renewables 2016 Global Status Report: key findings, Renewable Energy Policy Network for the 21st century.
- Sovacool (2009). "Going Completely Renewable: Is It Possible (Let Alone Desirable)?". The Electricity Journal 22 (4): 95–111. DOI:10.1016/j.tej.2009.03.011.
Ịgụ ihe ndị ọzọ
dezie- ↑ Innovation in Concentrating Thermal Solar Power (CSP), RenewableEnergyFocus.com website.
- ↑ Stern (10 October 2013). Solana: 10 Facts You Didn't Know About the Concentrated Solar Power Plant Near Gila Bend. Phoenix New Times.
- ↑ Statistical Review of World Energy, Workbook (xlsx), London, 2016
- ↑ 4.0 4.1 Bogdanov (2021-02-01). "Full energy sector transition towards 100% renewable energy supply: Integrating power, heat, transport and industry sectors including desalination" (in en). Applied Energy 283: 116273. DOI:10.1016/j.apenergy.2020.116273. ISSN 0306-2619.
- ↑ 5.0 5.1 (2019) in Teske: Achieving the Paris Climate Agreement Goals (in en). DOI:10.1007/978-3-030-05843-2. ISBN 978-3-030-05842-5.
- ↑ 6.0 6.1 Cheap, safe 100% renewable energy possible before 2050, says Finnish uni study (en). Yle Uutiset (12 April 2019). Retrieved on 2021-06-18.
- ↑ 7.0 7.1 Gulagi (2021-07-01). "Transition pathway towards 100% renewable energy across the sectors of power, heat, transport, and desalination for the Philippines" (in en). Renewable and Sustainable Energy Reviews 144: 110934. DOI:10.1016/j.rser.2021.110934. ISSN 1364-0321.
- ↑ 8.0 8.1 8.2 Hansen (2019). "Status and perspectives on 100% renewable energy systems". Energy 175: 471–480. DOI:10.1016/j.energy.2019.03.092.
- ↑ Meschede (2022-06-24). "A review of 100% renewable energy scenarios on islands" (in en). WIREs Energy and Environment 11 (6). DOI:10.1002/wene.450. ISSN 2041-8396.
- ↑ Sørensen (25 July 1975). "A plan is outlined according to which solar and wind energy would supply Denmark's needs by the year 2050". Science 189: 255–260. DOI:10.1126/science.189.4199.255. ISSN 0036-8075. PMID 17813696.
- ↑ Hohmeyer (2015). "Trends toward 100% renewable electricity supply in Germany and Europe: A paradigm shift in energy policies". Wiley Interdisciplinary Reviews: Energy and Environment 4: 74–97. DOI:10.1002/wene.128.
- ↑ Green, Joshua (July–August 2009). The Elusive Green Economy. The Atlantic.
- ↑ Aller-Leine-Tal. Kommunal Erneuerbar (August 2012).
- ↑ Cort-Brün Voige, Aller Leine Tal. Go 100% Renewable Energy. Archived from the original on 2022-07-06. Retrieved on 2023-04-04.
- ↑ 15.0 15.1 Aspen is third U.S. city to reach 100% renewable energy. The Aspen Times. Archived from the original on 5 September 2015. Retrieved on 6 September 2015.
- ↑ "Bhutan: a proactive sustainability and renewable energy leader • BiogasWorld", BiogasWorld, 2016-02-25. Retrieved on 2018-08-04. (in en-US)
- ↑ Our Energy Portfolio. Burlington Electric Department.
- ↑ Provincial and Territorial Energy Profiles – British Columbia. Canada Energy Regulator (2021-03-17). Retrieved on 2021-06-23.
- ↑ 19.0 19.1 19.2 19.3 19.4 Washington State Electric Utility Fuel Mix Disclosure Reports For Calendar Year 2018. Washington State Department of Commerce (October 2019). Retrieved on 30 January 2020.
- ↑ Fuel Mix Disclosure (2020). Retrieved on 18 October 2022.
- ↑ Costa Rica Is 99% Powered By Renewable Energy - MetaEfficient. MetaEfficient (8 April 2008). Retrieved on 23 November 2015.
- ↑ Power Africa in Democratic Republic of the Congo | Power Africa | U.S. Agency for International Development (en). www.usaid.gov (2020-04-16). Retrieved on 2021-06-23.
- ↑ Democratic Republic of the Congo - Countries & Regions (en-GB). IEA. Retrieved on 2021-06-23.
- ↑ POWER AFRICA IN ETHIOPIA | Power Africa | U.S. Agency for International Development (en). www.usaid.gov (2021-05-26). Retrieved on 2021-09-20.
- ↑ Georgetown's energy 100 percent renewable with solar plant – City of Georgetown Texas.
- ↑ Guevara-Stone (10 September 2013). A High-Renewables Tomorrow, Today: Greensburg, Kansas. RMI Outlet. Archived from the original on 6 September 2015. Retrieved on 6 September 2015.
- ↑ Lower Austria Claims 100% Renewable Electricity - CleanTechnica. cleantechnica.com (11 November 2015).
- ↑ Provincial and Territorial Energy Profiles – Manitoba. Canada Energy Regulator (2018). Retrieved on 2021-02-28.
- ↑ Provincial and Territorial Energy Profiles – Newfoundland and Labrador. Government of Canada (8 April 2020).
- ↑ Palo Alto switches to 100% renewables – at a cost of $3 a year (23 July 2013).
- ↑ 'IRENA (2015), Renewable Energy Policy Brief: Paraguay; IRENA, Abu Dhabi'.. Archived from the original on 16 September 2017. Retrieved on 16 September 2017.
- ↑ Hydro-Québec's Electricity Facts: Energy Supplies and Air Emissions. Hydro-Québec (2013). Archived from the original on 6 March 2016. Retrieved on 30 January 2016.
- ↑ Kolbert (30 June 2008). The Island in the Wind. Newyorker.com. Retrieved on 14 November 2013.
- ↑ "Renewables met 97% of Scotland's electricity demand in 2020", BBC News, 25 March 2021. Retrieved on 2021-03-26.
- ↑ Did you know Sealand is one of the most environmentally responsible nations on Earth due to a combination of wind turbines and solar panels? The collection of rain provides Sealand's entire supply of fresh water. (1 October 2022). Retrieved on 18 October 2022.
- ↑ Thank you for your donations (30 October 2015). Archived from the original on 19 October 2022. Retrieved on 18 October 2022.
- ↑ Seattle City Light | Power Mix. seattle.gov. Retrieved on 31 July 2018.
- ↑ Energy in New Zealand 2015. Ministry of Business, Innovation and Employment. Archived from the original on 15 February 2016. Retrieved on 23 February 2016.
- ↑ Tajikistan | International Hydropower Association (en). hydropower.org. Retrieved on 16 November 2018.
- ↑ Tasmania is now powered entirely by renewable energy (en). weforum.org (9 December 2020). Retrieved on 11 January 2021.
- ↑ Morrison steps in to take majority stake in Marinus Link project. reneweconomy.com.au (15 December 2020). Retrieved on 11 January 2021.
- ↑ Tesla runs an entire island on solar power.
- ↑ Mier. A small Greek island will become the first in the Mediterranean to run solely on wind and solar power after its businesses have been hindered by blackouts. Business Insider. Archived from the original on 2023-04-05. Retrieved on 2023-04-04.
- ↑ "Tokelau islands shift to solar energy", 7 November 2012.
- ↑ Watts. "Uruguay makes dramatic shift to nearly 95% electricity from clean energy", The Guardian, 3 December 2015.
- ↑ "Germany's renewable energy experiment comes at a cost", Financial Times, 15 September 2013.
- ↑ Provincial and Territorial Energy Profiles – Yukon. Government of Canada (8 April 2020).
- ↑ Jacobson (8 December 2015). "Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes". Proceedings of the National Academy of Sciences 112 (49): 15060–15065. DOI:10.1073/pnas.1510028112. PMID 26598655.
- ↑ Jacobson (2017). "100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World". Joule 1: 108–21. DOI:10.1016/j.joule.2017.07.005.
- ↑ Jacobson (2018). "Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes". Renewable Energy 123: 236–48. DOI:10.1016/j.renene.2018.02.009.
- ↑ Data. web.stanford.edu.